1.Advances in bacterial adsorption and transport of aromatic compounds.
Yinming XU ; Huiping REN ; Kai TIAN ; Zhiliang YU ; Qiu MENG
Chinese Journal of Biotechnology 2023;39(3):961-977
Aromatic compounds are a class of organic compounds with benzene ring(s). Aromatic compounds are hardly decomposed due to its stable structure and can be accumulated in the food cycle, posing a great threat to the ecological environment and human health. Bacteria have a strong catabolic ability to degrade various refractory organic contaminants (e.g., polycyclic aromatic hydrocarbons, PAHs). The adsorption and transportation are prerequisites for the catabolism of aromatic compounds by bacteria. While remarkable progress has been made in understanding the metabolism of aromatic compounds in bacterial degraders, the systems responsible for the uptake and transport of aromatic compounds are poorly understood. Here we summarize the effect of cell-surface hydrophobicity, biofilm formation, and bacterial chemotaxis on the bacterial adsorption of aromatic compounds. Besides, the effects of outer membrane transport systems (such as FadL family, TonB-dependent receptors, and OmpW family), and inner membrane transport systems (such as major facilitator superfamily (MFS) transporter and ATP-binding cassette (ABC) transporter) involved in the membrane transport of these compounds are summarized. Moreover, the mechanism of transmembrane transport is also discussed. This review may serve as a reference for the prevention and remediation of aromatic pollutants.
Humans
;
Adsorption
;
Bacteria/metabolism*
;
Organic Chemicals
;
Biological Transport
;
ATP-Binding Cassette Transporters
;
Polycyclic Aromatic Hydrocarbons/metabolism*
2.Sterol transport proteins in yeast: a review.
Yu WANG ; Tao WU ; Xuqian FAN ; Haihua RUAN ; Feiyu FAN ; Xueli ZHANG
Chinese Journal of Biotechnology 2023;39(8):3204-3218
Sterols are a class of cyclopentano-perhydrophenanthrene derivatives widely present in living organisms. Sterols are important components of cell membranes. In addition, they also have important physiological and pharmacological activities. With the development of synthetic biology and metabolic engineering technology, yeast cells are increasingly used for the heterologous synthesis of sterols in recent years. Nevertheless, since sterols are hydrophobic macromolecules, they tend to accumulate in the membrane fraction of yeast cells and consequently trigger cytotoxicity, which hampers the further improvement of sterols yield. Therefore, revealing the mechanism of sterol transport in yeast, especially understanding the working principle of sterol transporters, is vital for designing strategies to relieve the toxicity of sterol accumulation and increasing sterol yield in yeast cell factories. In yeast, sterols are mainly transported through protein-mediated non-vesicular transport mechanisms. This review summarizes five types of sterol transport-related proteins that have been reported in yeast, namely OSBP/ORPs family proteins, LAM family proteins, ABC transport family proteins, CAP superfamily proteins, and NPC-like sterol transport proteins. These transporters play important roles in intracellular sterol gradient distribution and homeostasis maintenance. In addition, we also review the current status of practical applications of sterol transport proteins in yeast cell factories.
Saccharomyces cerevisiae/genetics*
;
Sterols
;
Phytosterols
;
Biological Transport
;
ATP-Binding Cassette Transporters/genetics*
3.Cryo-EM structures for the Mycobacterium tuberculosis iron-loaded siderophore transporter IrtAB.
Shan SUN ; Yan GAO ; Xiaolin YANG ; Xiuna YANG ; Tianyu HU ; Jingxi LIANG ; Zhiqi XIONG ; Yuting RAN ; Pengxuan REN ; Fang BAI ; Luke W GUDDAT ; Haitao YANG ; Zihe RAO ; Bing ZHANG
Protein & Cell 2023;14(6):448-458
The adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter, IrtAB, plays a vital role in the replication and viability of Mycobacterium tuberculosis (Mtb), where its function is to import iron-loaded siderophores. Unusually, it adopts the canonical type IV exporter fold. Herein, we report the structure of unliganded Mtb IrtAB and its structure in complex with ATP, ADP, or ATP analogue (AMP-PNP) at resolutions ranging from 2.8 to 3.5 Å. The structure of IrtAB bound ATP-Mg2+ shows a "head-to-tail" dimer of nucleotide-binding domains (NBDs), a closed amphipathic cavity within the transmembrane domains (TMDs), and a metal ion liganded to three histidine residues of IrtA in the cavity. Cryo-electron microscopy (Cryo-EM) structures and ATP hydrolysis assays show that the NBD of IrtA has a higher affinity for nucleotides and increased ATPase activity compared with IrtB. Moreover, the metal ion located in the TM region of IrtA is critical for the stabilization of the conformation of IrtAB during the transport cycle. This study provides a structural basis to explain the ATP-driven conformational changes that occur in IrtAB.
Siderophores/metabolism*
;
Iron/metabolism*
;
Mycobacterium tuberculosis/metabolism*
;
Cryoelectron Microscopy
;
Adenosine Triphosphate/metabolism*
;
ATP-Binding Cassette Transporters
4.Tanshinone IIA inhibits hypoxia/reoxygenation-induced cardiomyocyte apoptosis and autophagy by regulating ABCE1.
Chinese Critical Care Medicine 2023;35(6):627-632
OBJECTIVE:
To investigate the effects of tanshinone IIA on apoptosis and autophagy induced by hypoxia/reoxygenation in H9C2 cardiomyocytes and its mechanism.
METHODS:
H9C2 cardiomyocytes in logarithmic growth phase were divided into control group, hypoxia/reoxygenation model group and tanshinone IIA low-dose, medium-dose and high-dose groups (50, 100, 200 mg/L tanshinone IIA were treated after hypoxia/reoxygenation respectively). The dose with good therapeutic effect was selected for follow-up study. The cells were divided into control group, hypoxia/reoxygenation model group, tanshinone IIA+pcDNA3.1-NC group and tanshinone IIA+pcDNA3.1-ABCE1 group. The cells were transfected with the overexpressed plasmids pcDNA3.1-ABCE1 and pcDNA3.1-NC and then treated accordingly. Cell counting kit-8 (CCK-8) was used to detect H9C2 cell activity in each group. The apoptosis rate of cardiomyocytes was detected by flow cytometry. The ATP-binding cassette transporter E1 (ABCE1), apoptosis-related proteins Bcl-2 and Bax, caspase-3, autophagy-related proteins Beclin-1, microtubule-associated protein 1 light chain 3 (LC3II/I) and p62 mRNA expression level of H9C2 cells in each group were detected by real-time fluorescence quantitative reverse transcription-polymerase chain reaction (RT-qPCR). The protein expression levels of the above indexes in H9C2 cells were detected by Western blotting.
RESULTS:
(1) Cell activity and ABCE1 expression: tanshinone IIA inhibited the activity of H9C2 cells induced by hypoxia/reoxygenation, and the effect was significant at medium-dose [(0.95±0.05)% vs. (0.37±0.10)%, P < 0.01], mRNA and protein expression of ABCE1 were significantly reduced [ABCE1 mRNA (2-ΔΔCt): 2.02±0.13 vs. 3.74±0.17, ABCE1 protein (ABCE1/GAPDH): 0.46±0.04 vs. 0.68±0.07, both P < 0.05]. (2) Expression of apoptosis-related proteins: medium-dose of tanshinone IIA inhibited the apoptosis of H9C2 cells induced by hypoxia/reoxygenation [apoptosis rate: (28.26±2.52)% vs. (45.27±3.07)%, P < 0.05]. Compared with the hypoxia/reoxygenation model group, medium-dose of tanshinone IIA significantly down-regulated the protein expression of Bax and caspase-3 in H9C2 cells induced by hypoxia/reoxygenation, and significantly up-regulated the protein expression of Bcl-2 [Bax (Bax/GAPDH): 0.28±0.03 vs. 0.47±0.03, caspase-3 (caspase-3/GAPDH): 0.31±0.02 vs. 0.44±0.03, Bcl-2 (Bcl-2/GAPDH): 0.53±0.02 vs. 0.37±0.05, all P < 0.05]. (3) Expression of autophagy-related proteins: compared with the control group, the positive rate of LC3 in the hypoxia/reoxygenation model group was significantly increased, while the positive rate of LC3 in the medium-dose of tanshinone IIA group was significantly decreased [(20.67±3.09)% vs. (42.67±3.86)%, P < 0.01]. Compared with hypoxia/reoxygenation model group, medium-dose of tanshinone IIA significantly down-regulated Beclin-1, LC3II/I and p62 protein expressions [Beclin-1 (Beclin-1/GAPDH): 0.27±0.05 vs. 0.47±0.03, LC3II/I ratio: 0.24±0.05 vs. 0.47±0.04, p62 (p62/GAPDH): 0.21±0.03 vs. 0.48±0.02, all P < 0.05]. (4) Expression of apoptosis and autophagy related proteins after transfection with overexpressed ABCE1 plasmid: compared with tanshinone IIA+pcDNA3.1-NC group, the protein expression levels of Bax, caspase-3, Beclin-1, LC3II/I and p62 in tanshinone IIA+pcDNA3.1-ABCE1 group were significantly up-regulated, while the protein expression level of Bcl-2 was significantly down-regulated.
CONCLUSIONS
100 mg/L tanshinone IIA could inhibit autophagy and apoptosis of cardiomyocytes by regulating the expression level of ABCE1. So, it protects H9C2 cardiomyocytes injury induced by hypoxia/reoxygenation.
Humans
;
Apoptosis
;
ATP-Binding Cassette Transporters/metabolism*
;
Autophagy
;
bcl-2-Associated X Protein/metabolism*
;
Beclin-1/metabolism*
;
Caspase 3/metabolism*
;
Follow-Up Studies
;
Myocytes, Cardiac
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
RNA, Messenger/metabolism*
;
Cell Hypoxia
6.Progress of studies on ATP-binding cassette transporters and transportation of secondary metabolites in medicinal plants.
Ning LIU ; Hai SUN ; Zheng-Bo LIU ; Cai SHAO ; Lin-Lin ZHANG
China Journal of Chinese Materia Medica 2021;46(1):52-56
ATP-binding cassette(ABC) transporters are one of the largest protein families in organisms, with important effects in regulating plant growth and development, root morphology, transportation of secondary metabolites and resistance of stress. Environmental stress promotes the biosynthesis and accumulation of secondary metabolites, which determines the quality of medicinal plants. Therefore, how to improve the accumulation of secondary metabolites has been a hotspot in studying medicinal plants. Many studies have showed that ABC transporters are extremely related to the transportation and accumulation of secondary metabolites in plants. Recently, with the great development of genomics and transcriptomic sequencing technology, the regulatory mechanisms of ABC transporters on secondary metabolites have attached great attentions in medicinal plants. This paper reviewed the mechanisms of different groups of ABC transporters in transporting secondary metabolites through cell membranes. This paper provided key theoretical basis and technical supports in studying the mechanisms of ABC transporters in medicinal plant, and promoting the accumulation of secondary metabolites, in order to improve the quality of medicinal plants.
ATP-Binding Cassette Transporters/metabolism*
;
Biological Transport
;
Plant Development
;
Plants, Medicinal/metabolism*
;
Stress, Physiological
7.MiR-124-3p Enhances the Sansitivity of Chronic Myelogenous Leukemia Cell K562-R to Imatinib by Targeting ABCA2.
Feng-Juan ZHANG ; Wei-Jie CAO ; Fang-Fang CHANG ; Fu-Yun HUANG ; Jian-Xin GUO
Journal of Experimental Hematology 2020;28(3):789-796
OBJECTIVE:
To investigate the effect and mechanism of miR-124-3p-targeing regulating ABCA2 on chronic myelogenous leukemia cell K562-R.
METHODS:
CML cells with miR-124-3p-overexpression and ABCA2-over-expression as well as subcutaneoustrans planted tumor nude mice were used as study objects. And the CML cells were divided into four groups: K562-R blank control, miR-124-3p mimic control, ABCA2-overexpression and mimic+PC ABCA2. The effects of miR-124-3p and ABCA2 on CML cells were analyzed. The levels of proliferation-, apoptosis- and autophagy- related protein were determined by Western blot. qRT-PCR was employed to detect the levels of miR-124-3p and ABCA2 in K562-R cells. The relationship between miR-124-3p and ABCA2 was validated by luciferase reporter system assays and bioinformatics. Hoechst/immunohistochemical staining and CCK-8 assay were performed to investigate the function involved.
RESULTS:
miR-124-3p highly expressed in K562-S cells and lowly expressed in K562-R cells, however, ABCA2 lowly expressed in K562-S cells and highly expressed in K562-R cells. Over-expression of miR-124-3p significantly decreased ABCA2 level and cell growth, but increased autophagy and apoptosis in K562-R cells (P<0.01). When ABCA2 was over-expressed, the K562-R cell growth was promoted and autophagy and apoptosis were inhibited (P<0.01). The miR-124-3p promoted cell autophagy and apoptosis but inhibited cell growth in nude mice transplant tumor model (P<0.01).
CONCLUSION
miR-124-3p can target ABCA2 to inhibit the growth of CML cells and promote the cell autophagy and apoptosis of CML cells.
ATP-Binding Cassette Transporters
;
Animals
;
Apoptosis
;
Cell Proliferation
;
Humans
;
Imatinib Mesylate
;
K562 Cells
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive
;
Mice
;
Mice, Nude
;
MicroRNAs
8.Correlation between estrogen receptor β and ABCC11 gene single nucleotide polymorphisms and axillary osmidrosis.
Rulong HU ; Yu GUO ; Jianhong LONG
Journal of Central South University(Medical Sciences) 2019;44(3):329-333
To explore the correlation between single nucleotide polymorphisms (SNPs) of hormone receptor gene or other related genes and axillary osmidrosis (AO).
Methods: Whole blood samples of 219 patients with AO and 159 normal people were collected, and their genomic DNA was extracted. SNPs of 49 selected gene loci were detected and analyzed by using matrix-assisted laser analysis and ionization time of flight mass spectrometry and other related technologies.
Results: There were significant differences in SNPs at rs1256061 of estrogen receptor β gene and rs17822931, rs16945916 and rs62058521 in ABCC11 gene between the AO patients and normal people (all P<0.01). 81.1% of patients with AO carried G allele at rs1256061, while only 63.2% of normal people carried G allele; 96.3% of patients with AO carried G allele at rs17822931, while only 4.4% of the normal people carried G allele; 28.6% of the patients with armpit odor carried the G allele of rs16945916, while only 0.6% of the normal people carried G allele; 28.0% of patients with AO carried G allele at rs62058521, while only 0.6% of the normal people carried G allele.
Conclusion: SNPs of rs1256061 at the locus of estrogen receptor gene are correlated with the pathogenesis of AO, while SNPs at multiple loci (rs16945916, rs62058521 and rs17822931) in ABCC11 gene are correlated with the pathogenesis of AO.
ATP-Binding Cassette Transporters
;
genetics
;
Axilla
;
Estrogen Receptor beta
;
genetics
;
Genotype
;
Humans
;
Polymorphism, Single Nucleotide
9.Phenotype and genetic analysis of a pedigree affected with progressive familial intrahepatic cholestasis.
Qinghua WU ; Beibei MA ; Saisai YANG ; Shiyue MEI ; Xiyang MA ; Xiangdong KONG ; Huirong SHI
Chinese Journal of Medical Genetics 2019;36(8):789-793
OBJECTIVE:
To explore the genetic etiology for a pedigree affected with progressive familial intrahepatic cholestasis (PFIC).
METHODS:
Target sequence capture and next generation sequencing (NGS) were applied for the proband. PCR and Sanger sequencing were used to verify the suspected mutation in his sister with similar symptoms and his parents.
RESULTS:
The proband and his sister manifested after birth with symptoms including jaundice, pruritus and developmental retardation. NGS has identified compound heterozygous mutations of ABCB11 gene, which encodes bile salt export pump protein (BSEP), namely c.2494C>T (p.Arg832Cys) and c.3223C>T (p.Gln1075*), in the proband, which were inherited from his father and mother respectively. His sister carried the same compound mutations.
CONCLUSION
Based on the phenotype and genetic testing, the patients were diagnosed as PFIC2 caused by mutation of the ABCB11 gene. The c.3223C>T is a novel nonsense mutation which may cause premature termination of translation. Above results have enriched the spectrum of ABCB11 mutations and provided new evidence for the molecular basis of PFIC, which also facilitated genetic counseling for this pedigree.
ATP Binding Cassette Transporter, Subfamily B, Member 11
;
genetics
;
ATP-Binding Cassette Transporters
;
Cholestasis, Intrahepatic
;
genetics
;
Female
;
Genetic Testing
;
Humans
;
Male
;
Mutation
;
Pedigree
;
Phenotype
10.Two natural molecules preferentially inhibit azole-resistant Candida albicans with MDR1 hyperactivation.
Hong-Zhuo SHI ; Wen-Qiang CHANG ; Ming ZHANG ; Hong-Xiang LOU
Chinese Journal of Natural Medicines (English Ed.) 2019;17(3):209-217
Antifungal drug resistance is a significant clinical problem, and antifungal agents that can evade resistance are urgently needed. In infective niches, resistant organisms often co-existed with sensitive ones, or a subpopulation of antibiotic-susceptible organisms may evolve into resistant ones during antibiotic treatment and eventually dominate the whole population. In this study, we established a co-culture assay in which an azole-resistant Candida albicans strain was mixed with a susceptible strain labeled with green fluorescent protein to mimic in vivo conditions and screen for antifungal drugs. Fluconazole was used as a positive control to verify the validity of this co-culture assay. Five natural molecules exhibited antifungal activity against both susceptible and resistant C. albicans. Two of these compounds, retigeric acid B (RAB) and riccardin D (RD), preferentially inhibited C. albicans strains in which the efflux pump MDR1 was activated. This selectivity was attributed to greater intracellular accumulation of the drugs in the resistant strains. Changes in sterol and lipid compositions were observed in the resistant strains compared to the susceptible strain, and might increase cell permeability to RAB and RD. In addition, RAB and RD interfered with the sterol pathway, further aggregating the decrease in ergosterol in the sterol synthesis pathway in the MDR1-activated strains. Our findings here provide an alternative for combating resistant pathogenic fungi.
ATP-Binding Cassette Transporters
;
genetics
;
metabolism
;
Antifungal Agents
;
chemistry
;
metabolism
;
pharmacology
;
Azoles
;
pharmacology
;
Biosynthetic Pathways
;
drug effects
;
genetics
;
Candida albicans
;
chemistry
;
drug effects
;
metabolism
;
Cell Membrane
;
chemistry
;
metabolism
;
Coculture Techniques
;
Drug Resistance, Fungal
;
drug effects
;
Ergosterol
;
metabolism
;
Fungal Proteins
;
genetics
;
metabolism
;
Lipids
;
chemistry
;
Molecular Structure
;
Permeability
;
Phenyl Ethers
;
chemistry
;
metabolism
;
pharmacology
;
Sterols
;
chemistry
;
metabolism
;
Stilbenes
;
chemistry
;
metabolism
;
pharmacology
;
Triterpenes
;
chemistry
;
metabolism
;
pharmacology

Result Analysis
Print
Save
E-mail