1.Methyl ferulic acid ameliorates ethanol-induced L02 cell steatosis through microRNA-378b-mediated CaMKK2-AMPK pathway.
Ping HUANG ; Xing CHEN ; Rong-Hua MENG ; Jun LU ; Yan ZHANG ; Li LI ; Yong-Wen LI
China Journal of Chinese Materia Medica 2023;48(1):193-201
Alcoholic liver disease(ALD), with its increasing morbidity and mortality, has seriously and extensively affected the health of people worldwide. Methyl ferulic acid(MFA) has been proven to significantly inhibit alcohol-induced lipid production in L02 cells through the AMP-activated protein kinase(AMPK) pathway, but its in-depth mechanism remains unclear. This study aimed to further clarify the mechanism of MFA in improving lipid accumulation in L02 cells through the microRNA-378b(miR-378b)-mediated calcium/calmodulin-dependent protein kinase kinase 2(CaMKK2)-AMPK signaling pathway based on existing researches. L02 cells were induced by 100 mmol·L~(-1) ethanol for 48 h to establish the model of ALD in vitro, and 100, 50, and 25 μmol·L~(-1) concentration of MFA was treated. MiR-378b plasmids(containing the overexpression plasmid-miR-378b mimics, silence plasmid-miR-378b inhibitor, and their respective negative control-miR-378b NCs) were transfected into L02 cells by electroporation to up-regulate or down-regulate the levels of miR-378b in L02 cells. The levels of total cholesterol(TC) and triglyceride(TG) in cells were detected by commercial diagnostic kits and automatic biochemical analyzers. The expression levels of miR-378b in L02 cells were detected by real-time quantitative polymerase chain reaction(qRT-PCR). CaMKK2 mRNA levels were detected by PCR, and protein expressions of related factors involved in lipid synthesis, decomposition, and transport in lipid metabolism were detected by Western blot. The results displayed that ethanol significantly increased TG and TC levels in L02 cells, while MFA decreased TG and TC levels. Ethanol up-regulated the miR-378b level, while MFA effectively inhibited the miR-378b level. The overexpression of miR-378b led to lipid accumulation in ethanol-induced L02 cells, while the silence of miR-378b improved the lipid deposition induced by ethanol. MFA activated the CaMKK2-AMPK signaling pathway by lowering miR-378b, thus improving lipid synthesis, decomposition, and transport, which improved lipid deposition in L02 cells. This study shows that MFA improves lipid deposition in L02 cells by regulating the CaMKK2-AMPK pathway through miR-378b.
Humans
;
Ethanol/toxicity*
;
AMP-Activated Protein Kinases/metabolism*
;
Fatty Liver
;
Triglycerides
;
MicroRNAs/genetics*
;
Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics*
3.cPKCγ Deficiency Exacerbates Autophagy Impairment and Hyperphosphorylated Tau Buildup through the AMPK/mTOR Pathway in Mice with Type 1 Diabetes Mellitus.
Jiayin ZHENG ; Yue WANG ; Yue LIU ; Song HAN ; Ying ZHANG ; Yanlin LUO ; Yi YAN ; Junfa LI ; Li ZHAO
Neuroscience Bulletin 2022;38(10):1153-1169
Type 1 diabetes mellitus (T1DM)-induced cognitive dysfunction is common, but its underlying mechanisms are still poorly understood. In this study, we found that knockout of conventional protein kinase C (cPKC)γ significantly increased the phosphorylation of Tau at Ser214 and neurofibrillary tangles, but did not affect the activities of GSK-3β and PP2A in the hippocampal neurons of T1DM mice. cPKCγ deficiency significantly decreased the level of autophagy in the hippocampal neurons of T1DM mice. Activation of autophagy greatly alleviated the cognitive impairment induced by cPKCγ deficiency in T1DM mice. Moreover, cPKCγ deficiency reduced the AMPK phosphorylation levels and increased the phosphorylation levels of mTOR in vivo and in vitro. The high glucose-induced Tau phosphorylation at Ser214 was further increased by the autophagy inhibitor and was significantly decreased by an mTOR inhibitor. In conclusion, these results indicated that cPKCγ promotes autophagy through the AMPK/mTOR signaling pathway, thus reducing the level of phosphorylated Tau at Ser214 and neurofibrillary tangles.
AMP-Activated Protein Kinases/metabolism*
;
Animals
;
Autophagy
;
Diabetes Mellitus, Type 1
;
Glucose
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Mice
;
Phosphorylation
;
Protein Kinase C/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
tau Proteins/metabolism*
4.Fructus Zanthoxyli extract improves glycolipid metabolism disorder of type 2 diabetes mellitus via activation of AMPK/PI3K/Akt pathway: Network pharmacology and experimental validation.
Ting ZHANG ; Qing ZHANG ; Wei ZHENG ; Ting TAO ; Ruo-Lan LI ; Li-Yu WANG ; Wei PENG ; Chun-Jie WU
Journal of Integrative Medicine 2022;20(6):543-560
OBJECTIVE:
This study investigated the potential mechanisms behind the beneficial effects of Fructus Zanthoxyli (FZ) against type 2 diabetes mellitus (T2DM) based on network pharmacology and experimental validation.
METHODS:
Ultra-high-performance liquid chromatography coupled with hybrid quadrupole-orbitrap high-resolution mass spectrometry, and gas chromatography-mass spectrometry were used to identify the constituents of FZ. Next, the differentially expressed genes linked to the treatment of diabetes with FZ were screened using online databases (including Gene Expression Omnibus database and Swiss Target Prediction online database), and the overlapping genes and their enrichment were analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, the pathway was verified by in vitro experiments, and cell staining with oil red and Nile red showed that the extract of FZ had a therapeutic effect on T2DM.
RESULTS:
A total of 43 components were identified from FZ, and 39 differentially expressed overlapping genes were screened as the possible targets of FZ in T2DM. The dug component-target network indicated that PPARA, PPARG, PIK3R3, JAK2 and GPR88 might be the core genes targeted by FZ in the treatment of T2DM. Interestingly, the enrichment analysis of KEGG showed that effects of FZ against T2DM were closely correlated with the adenosine monophosphate-activated protein kinase (AMPK) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathways. In vitro experiments further confirmed that FZ significantly inhibited palmitic acid-induced lipid formation in HepG2 cells. Moreover, FZ treatment was able to promote the AMPK and PI3K/Akt expressions in HepG2 cells.
CONCLUSION
Network pharmacology combined with experimental validation revealed that FZ extract can improve the glycolipid metabolism disorder of T2DM via activation of the AMPK/PI3K/Akt pathway.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinase/metabolism*
;
Diabetes Mellitus, Type 2/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
AMP-Activated Protein Kinases/metabolism*
;
Glycolipids/therapeutic use*
;
Network Pharmacology
;
Plant Extracts/therapeutic use*
;
Drugs, Chinese Herbal/therapeutic use*
5.Increased glucose metabolism and alpha-glucosidase inhibition in Cordyceps militaris water extract-treated HepG2 cells.
Dae Jung KIM ; Yun Hwan KANG ; Kyoung Kon KIM ; Tae Woo KIM ; Jae Bong PARK ; Myeon CHOE
Nutrition Research and Practice 2017;11(3):180-189
BACKGROUND/OBJECTIVES: Recent living condition improvements, changes in dietary habits, and reductions in physical activity are contributing to an increase in metabolic syndrome symptoms including diabetes and obesity. Through such societal developments, humankind is continuously exposed to metabolic diseases such as diabetes, and the number of the victims is increasing. This study investigated Cordyceps militaris water extract (CMW)-induced glucose uptake in HepG2 cells and the effect of CMW treatment on glucose metabolism. MATERIALS/METHODS: Colorimetric assay kits were used to determine the glucokinase (GK) and pyruvate dehydrogenase (PDH) activities, glucose uptake, and glycogen content. Either RT-PCR or western blot analysis was performed for quantitation of glucose transporter 2 (GLUT2), hepatocyte nuclear factor 1 alpha (HNF-1α), phosphatidylinositol 3-kinase (PI3k), protein kinase B (Akt), phosphorylated AMP-activated protein kinase (pAMPK), phosphoenolpyruvate carboxykinase, GK, PDH, and glycogen synthase kinase 3 beta (GSK-3β) expression levels. The α-glucosidase inhibitory activities of acarbose and CMW were evaluated by absorbance measurement. RESULTS: CMW induced glucose uptake in HepG2 cells by increasing GLUT2 through HNF-1α expression stimulation. Glucose in the cells increased the CMW-induced phosphorylation of AMPK. In turn, glycolysis was stimulated, and glyconeogenesis was inhibited. Furthermore, by studying the mechanism of action of PI3k, Akt, and GSK-3β, and measuring glycogen content, the study confirmed that the glucose was stored in the liver as glycogen. Finally, CMW resulted in a higher level of α-glucosidase inhibitory activity than that from acarbose. CONCLUSION: CMW induced the uptake of glucose into HepG2 cells, as well, it induced metabolism of the absorbed glucose. It is concluded that CMW is a candidate or potential use in diabetes prevention and treatment.
Acarbose
;
alpha-Glucosidases*
;
AMP-Activated Protein Kinases
;
Blotting, Western
;
Cordyceps*
;
Food Habits
;
Glucokinase
;
Glucose Transport Proteins, Facilitative
;
Glucose*
;
Glycogen
;
Glycogen Synthase Kinase 3
;
Glycolysis
;
Hep G2 Cells*
;
Hepatocyte Nuclear Factor 1-alpha
;
Hypoglycemic Agents
;
Liver
;
Metabolic Diseases
;
Metabolism*
;
Motor Activity
;
Obesity
;
Oxidoreductases
;
Phosphatidylinositol 3-Kinase
;
Phosphoenolpyruvate
;
Phosphorylation
;
Proto-Oncogene Proteins c-akt
;
Pyruvic Acid
;
Social Conditions
;
Water*
6.Angiotensin II Modulates p130Cas of Podocytes by the Suppression of AMP-Activated Protein Kinase.
Tae Sun HA ; Hye Young PARK ; Su Bin SEONG ; Hee Yul AHN
Journal of Korean Medical Science 2016;31(4):535-541
Angiotensin II (Ang II) induces the pathological process of vascular structures, including renal glomeruli by hemodynamic and nonhemodynamic direct effects. In kidneys, Ang II plays an important role in the development of proteinuria by the modification of podocyte molecules. We have previously found that Ang II suppressed podocyte AMP-activated protein kinase (AMPK) via Ang II type 1 receptor and MAPK signaling pathway. In the present study, we investigated the roles of AMPK on the changes of p130Cas of podocyte by Ang II. We cultured mouse podocytes and treated them with various concentrations of Ang II and AMPK-modulating agents and analyzed the changes of p130Cas by confocal imaging and western blotting. In immunofluorescence study, Ang II decreased the intensity of p130Cas and changed its localization from peripheral cytoplasm into peri-nuclear areas in a concentrated pattern in podocytes. Ang II also reduced the amount of p130Cas in time and dose-sensitive manners. AMPK activators, metformin and AICAR, restored the suppressed and mal-localized p130Cas significantly, whereas, compound C, an AMPK inhibitor, further aggravated the changes of p130Cas. Losartan, an Ang II type 1 receptor antagonist, recovered the abnormal changes of p130Cas suppressed by Ang II. These results suggest that Ang II induces the relocalization and suppression of podocyte p130Cas by the suppression of AMPK via Ang II type 1 receptor, which would contribute to Ang II-induced podocyte injury.
AMP-Activated Protein Kinases/antagonists & inhibitors/chemistry/*metabolism
;
Aminoimidazole Carboxamide/analogs & derivatives/pharmacology
;
Angiotensin II/*pharmacology
;
Angiotensin II Type 1 Receptor Blockers/pharmacology
;
Animals
;
Blotting, Western
;
Cell Line
;
Cell Nucleus/metabolism
;
Crk-Associated Substrate Protein/*metabolism
;
Cytoplasm/metabolism
;
Focal Adhesion Kinase 1/metabolism
;
Losartan/pharmacology
;
Metformin/pharmacology
;
Mice
;
Microscopy, Confocal
;
Podocytes/cytology/drug effects/metabolism
;
Protein Kinase Inhibitors/*pharmacology
;
Ribonucleotides/pharmacology
;
Signal Transduction/*drug effects
7.Quinpirole Increases Melatonin-Augmented Pentobarbital Sleep via Cortical ERK, p38 MAPK, and PKC in Mice.
Sa Ik HONG ; Seung Hwan KWON ; Ji Young HWANG ; Shi Xun MA ; Jee Yeon SEO ; Yong Hyun KO ; Hyoung Chun KIM ; Seok Yong LEE ; Choon Gon JANG
Biomolecules & Therapeutics 2016;24(2):115-122
Sleep, which is an essential part of human life, is modulated by neurotransmitter systems, including gamma-aminobutyric acid (GABA) and dopamine signaling. However, the mechanisms that initiate and maintain sleep remain obscure. In this study, we investigated the relationship between melatonin (MT) and dopamine D2-like receptor signaling in pentobarbital-induced sleep and the intracellular mechanisms of sleep maintenance in the cerebral cortex. In mice, pentobarbital-induced sleep was augmented by intraperitoneal administration of 30 mg/kg MT. To investigate the relationship between MT and D2-like receptors, we administered quinpirole, a D2-like receptor agonist, to MT- and pentobarbital-treated mice. Quinpirole (1 mg/kg, i.p.) increased the duration of MT-augmented sleep in mice. In addition, locomotor activity analysis showed that neither MT nor quinpirole produced sedative effects when administered alone. In order to understand the mechanisms underlying quinpirole-augmented sleep, we measured protein levels of mitogen-activated protein kinases (MAPKs) and cortical protein kinases related to MT signaling. Treatment with quinpirole or MT activated extracellular-signal-regulated kinase 1 and 2 (ERK1/2), p38 MAPK, and protein kinase C (PKC) in the cerebral cortex, while protein kinase A (PKA) activation was not altered significantly. Taken together, our results show that quinpirole increases the duration of MT-augmented sleep through ERK1/2, p38 MAPK, and PKC signaling. These findings suggest that modulation of D2-like receptors might enhance the effect of MT on sleep.
Animals
;
Cerebral Cortex
;
Cyclic AMP-Dependent Protein Kinases
;
Dopamine
;
gamma-Aminobutyric Acid
;
Humans
;
Hypnotics and Sedatives
;
Melatonin
;
Mice*
;
Mitogen-Activated Protein Kinases
;
Motor Activity
;
Neurotransmitter Agents
;
p38 Mitogen-Activated Protein Kinases*
;
Pentobarbital*
;
Phosphotransferases
;
Protein Kinase C
;
Protein Kinases
;
Quinpirole*
8.Baicalin attenuates high fat diet-induced insulin resistance and ectopic fat storage in skeletal muscle, through modulating the protein kinase B/Glycogen synthase kinase 3 beta pathway.
You-Li XI ; Hong-Xia LI ; Chen CHEN ; Ya-Qun LIU ; Hong-Mei LV ; Shi-Qi DONG ; Er-Fei LUO ; Ming-Bo GU ; Hua LIU
Chinese Journal of Natural Medicines (English Ed.) 2016;14(1):48-55
Insulin resistance is the pathophysiological basis of many diseases. Overcoming early insulin resistance highly significant in prevention diabetes, non-alcoholic fatty liver, and atherosclerosis. The present study aimed at evaluating the therapeutic effects of baicalin on insulin resistance and skeletal muscle ectopic fat storage in high fat diet-induced mice, and exploring the potential molecular mechanisms. Insulin resistance in mice was induced with a high fat diet for 16 weeks. Animals were then treated with three different doses of baicalin (100, 200, and 400 mg·kg(-1)·d(-1)) for 14 weeks. Fasting blood glucose, fasting serum insulin, glucose tolerance test (GTT), insulin tolerance test (ITT), and skeletal muscle lipid deposition were measured. Additionally, the AMP-activated protein kinase/acetyl-CoA carboxylase and protein kinase B/Glycogen synthase kinase 3 beta pathways in skeletal muscle were further evaluated. Baicalin significantly reduced the levels of fasting blood glucose and fasting serum insulin and attenuated high fat diet induced glucose tolerance and insulin tolerance. Moreover, insulin resistance was significantly reversed. Pathological analysis revealed baicalin dose-dependently decreased the degree of the ectopic fat storage in skeletal muscle. The properties of baicalin were mediated, at least in part, by inhibition of the AMPK/ACC pathway, a key regulator of de novo lipogenesis and activation of the Akt/GSK-3β pathway, a key regulator of Glycogen synthesis. These data suggest that baicalin, at dose up to 400 mg·kg(-1)·d(-1), is safe and able to attenuate insulin resistance and skeletal muscle ectopic fat storage, through modulating the skeletal muscle AMPK/ACC pathway and Akt/GSK-3β pathway.
AMP-Activated Protein Kinases
;
metabolism
;
Acetyl-CoA Carboxylase
;
metabolism
;
Adipose Tissue
;
metabolism
;
Animals
;
Diet, High-Fat
;
Flavonoids
;
pharmacology
;
Glycogen Synthase Kinase 3 beta
;
physiology
;
Insulin Resistance
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Muscle, Skeletal
;
metabolism
;
Proto-Oncogene Proteins c-akt
;
physiology
;
Signal Transduction
;
physiology
9.The effect of 5-aminoimidazole-4-carboxamide-ribonucleoside was mediated by p38 mitogen activated protein kinase signaling pathway in FRO thyroid cancer cells.
Won Gu KIM ; Hyun Jeung CHOI ; Tae Yong KIM ; Young Kee SHONG ; Won Bae KIM
The Korean Journal of Internal Medicine 2014;29(4):474-481
BACKGROUND/AIMS: 5'-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a cellular energy sensor that monitors intracellular AMP/adenosine triphosphate (ATP) ratios and is a key regulator of the proliferation and survival of diverse malignant cell types. In the present study, we investigated the effect of activating AMPK by 5-aminoimidazole-4-carboxamide-ribonucleotide (AICAR) in thyroid cancer cells. METHODS: We used FRO thyroid cancer cells harboring the BRAF(V600E) mutation to examine the effect of AICAR on cell proliferation and cell survival. We also evaluated the involvement of mitogen-activated protein kinase (MAPK) pathways in this effect. RESULTS: We found that AICAR treatment promoted AMPK activation and suppressed cell proliferation and survival by inducing p21 accumulation and activating caspase-3. AICAR significantly induced activation of p38 MAPK, and pretreatment with SB203580, a specific inhibitor of the p38 MAPK pathway, partially but significantly rescued cell survival. Furthermore, small interfering RNA targeting AMPK-alpha1 abolished AICAR-induced activation of p38 MAPK, p21 accumulation, and activation of caspase-3. CONCLUSIONS: Our findings demonstrate that AMPK activation using AICAR inhibited cell proliferation and survival by activating p38 MAPK and proapoptotic molecules in FRO thyroid cancer cells. These results suggest that the AMPK and p38 MAPK signaling pathways may be useful therapeutic targets to treat thyroid cancer.
AMP-Activated Protein Kinases/genetics/metabolism
;
Aminoimidazole Carboxamide/*analogs & derivatives/pharmacology
;
Antineoplastic Agents/*pharmacology
;
Caspase 3/metabolism
;
Cell Line, Tumor
;
Cell Proliferation/drug effects
;
Cell Survival/drug effects
;
Cyclin-Dependent Kinase Inhibitor p21/metabolism
;
Dose-Response Relationship, Drug
;
Enzyme Activation
;
Enzyme Activators/pharmacology
;
Humans
;
Mutation
;
Protein Kinase Inhibitors/pharmacology
;
Proto-Oncogene Proteins B-raf/genetics
;
RNA Interference
;
Ribonucleotides/*pharmacology
;
Signal Transduction/*drug effects
;
Thyroid Neoplasms/*enzymology/genetics/pathology
;
Time Factors
;
Transfection
;
p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors/*metabolism
10.Arctiin inhibits adipogenesis in 3T3-L1 cells and decreases adiposity and body weight in mice fed a high-fat diet.
Byulchorong MIN ; Heejin LEE ; Ji Hye SONG ; Myung Joo HAN ; Jayong CHUNG
Nutrition Research and Practice 2014;8(6):655-661
BACKGROUND/OBJECTIVES: The purpose of this study was to examine the effects and associated mechanisms of arctiin, a lignan compound found in burdock, on adipogenesis in 3T3-L1 cells. Also, the effects of arctiin supplementation in obese mice fed a high-fat diet on adiposity were examined. MATERIALS/METHODS: 3T3-L1 cells were treated with arctiin (12.5 to 100 microM) during differentiation for 8 days. The accumulation of lipid droplets was determined by Oil Red O staining and intracellular triglyceride contents. The expressions of genes related to adipogenesis were measured by real-time RT-PCR and Western blot analyses. For in vivo study, C57BL/6J mice were first fed either a control diet (CON) or high-fat diet (HF) to induce obesity, and then fed CON, HF, or HF with 500 mg/kg BW arctiin (HF + AC) for four weeks. RESULTS: Arctiin treatment to 3T3-L1 pre-adipocytes markedly decreased adipogenesis in a dose-dependent manner. The arctiin treatment significantly decreased the protein levels of the key adipogenic regulators PPARgamma and C/EBPalpha, and also significantly inhibited the expression of SREBP-1c, fatty acid synthase, fatty acid-binding protein and lipoprotein lipase. Also, arctiin greatly increased the phosphorylation of AMP-activated protein kinase (AMPK) and its downstream target phosphorylated-acetyl CoA carboxylase. Furthermore, administration of arctiin significantly decreased the body weight in obese mice fed with the high-fat diet. The epididymal, perirenal or total visceral adipose tissue weights of mice were all significantly lower in the HF + AC than in the HF. Arctiin administration also decreased the sizes of lipid droplets in the epididymal adipose tissue. CONCLUSIONS: Arctiin inhibited adipogenesis in 3T3-L1 adipocytes through the inhibition of PPARgamma and C/EBPalpha and the activation of AMPK signaling pathways. These findings suggest that arctiin has a potential benefit in preventing obesity.
3T3-L1 Cells*
;
Adenylate Kinase
;
Adipocytes
;
Adipogenesis*
;
Adipose Tissue
;
Adiposity*
;
AMP-Activated Protein Kinases
;
Animals
;
Blotting, Western
;
Body Weight*
;
Diet
;
Diet, High-Fat*
;
Intra-Abdominal Fat
;
Lipoprotein Lipase
;
Mice*
;
Mice, Obese
;
Obesity
;
Phosphorylation
;
PPAR gamma
;
Sterol Regulatory Element Binding Protein 1
;
Triglycerides
;
Weights and Measures

Result Analysis
Print
Save
E-mail