1.Clinicopathological Characteristics of HER2-Positive Breast Cancer Patients with BRCA1/2 Pathogenic Variants and Their Response to Neoadjuvant Targeted Therapy
Xingyu LIAO ; Huimin LIU ; Jie SUN ; Li HU ; Juan ZHANG ; Lu YAO ; Ye XU ; Yuntao XIE
Cancer Research on Prevention and Treatment 2025;52(6):491-495
		                        		
		                        			
		                        			Objective To analyze the proportion and clinicopathological characteristics of HER2-positive breast cancer patients with BRCA1/2 pathogenic variants, and their response to neoadjuvant anti-HER2 targeted therapy. Methods The clinicopathological data of 531 breast cancer patients with germline BRCA1/2 pathogenic variants (201 with BRCA1 variants and 330 with BRCA2 variants) were analyzed. Results Among the 201 BRCA1 and 330 BRCA2 variants, 17 (8.5%) and 42 (12.7%) HER2-positive breast cancer cases were identified, respectively, accounting for 11.1% of all BRCA1/2-mutated breast cancers. Compared with BRCA1/2-mutated HR-positive/HER2-negative patients, HER2-positive patients did not present any significant differences in clinicopathological features; however, compared with triple-negative breast cancer patients, HER2-positive patients had a later onset age and lower tumor grade. Among the 17 patients who received neoadjuvant anti-HER2 targeted therapy, 10 cases achieved pCR (58.8%), whereas 7 cases did not (41.2%). Conclusion HER2-positive breast cancer accounts for more than 10% of BRCA1/2-mutated patients. Approximately 40% of these patients fail to achieve pCR after neoadjuvant targeted therapy. This phenomenon highlights the possibility of combining anti-HER2 targeted agents with poly (adenosine diphosphate-ribose) polymerase inhibitors.
		                        		
		                        		
		                        		
		                        	
2.Standardized training guidelines for the clinical application of ventricular assist devices in Shanghai
Jing CAI ; Qingrong TANG ; Xiaoning SUN ; Dingqian LIU ; Ming TAN ; Juan HUANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(04):437-441
		                        		
		                        			
		                        			According to the "Regulations on clinical application management of medical technologies", physicians intending to carry out restricted technologies must undergo standardized training and pass assessments in accordance with the clinical application management standards for the respective technology. As ventricular assist technology is classified as a nationally restricted technology, standardized training is one of the essential conditions for its application. This paper primarily explores the standardized training for the clinical application of ventricular assist technology in Shanghai, in light of its background, clinical application, and current training status. It proposes the training requirements for ventricular assist technology, animal training assessment standards, and clinical practice assessment standards in Shanghai, aiming to promote the standardized development and high-quality advancement of ventricular assist technology in Shanghai.
		                        		
		                        		
		                        		
		                        	
3.Preparation of HA-modified emodin-contained multi-walled carbon nanotubes drug delivery system and its inhi-bitory effect on breast cancer cells
Yuduo LI ; Juan DU ; Yunlong LIU ; Feng GENG ; Xiaobing CHEN
China Pharmacy 2025;36(12):1463-1469
		                        		
		                        			
		                        			OBJECTIVE To prepare hyaluronic acid (HA)-modified emodin (EMD)-contained multi-walled carbon nanotubes (MWCNTs) drug delivery system (HA-MWCNTs-EMD) and explore its in vitro inhibitory effect on breast cancer cells. METHODS EMD was loaded onto MWCNTs to prepare a drug delivery system MWCNTs-EMD; subsequently, the system was further modified with HA to obtain the drug delivery system HA-MWCNTs-EMD. The two drug delivery systems mentioned above were characterized. With free EMD as the reference, the drug release in vitro of the above two drug delivery systems was investigated; the uptake of EMD by two breast cancer cells (MCF-7, MDA-MB-231 cells) was detected. The impacts of the above two drug delivery systems on the expression of surface glycoprotein differentiation group 44 (CD44), activity, apoptosis and lactate dehydrogenase (LDH) release of two breast cancer cells were detected. RESULTS The encapsulation efficiencies of MWCNTs-EMD and HA-MWCNTs-EMD were both (63.52±2.74)%, with drug loading rates of (25.01±1.83)% and (12.13± 1.96)%, particle sizes of (865.95±2.16) and (351.86±1.68) nm, polydispersity indexes of 0.54±0.02 and 0.23±0.01, and Zeta potentials of (23.87±0.14) and (-42.79±0.39) mV, respectively. The 2, 4, 6, 8, 10, 12 and 24-hour cumulative release rates of EMD in MWCNTs-EMD and HA-MWCNTs-EMD were significantly lower than those in free EMD, while the cumulative release rate of HA-MWCNTs-EMD was significantly higher than that of MWCNTs-EMD (P<0.05); the EMD uptakes of MWCNTs-EMD and HA-MWCNTs-EMD by the two types of breast cancer cells were significantly higher than their uptake of free EMD (P<0.05). Compared with the free EMD group, the MWCNTs-EMD and MWCNTs-EMD groups showed significantly higher apoptosis rate and LDH release, significantly lower surface CD44 expression (except for the MWCNTs-EMD group) and cell viability in both cell types, and the effect of HA-MWCNTs-EMD was more pronounced (P<0.05). CONCLUSIONS A novel drug delivery system HA-MWCNTs- EMD loaded with EMD is developed successfully; the drug delivery system has a certain slow-release effect, which can significantly reduce the activity of breast cancer cells, promote their apoptosis and increase the release of LDH, and the above anti- breast cancer effect is significantly stronger than that of free EMD and MWCNTs-EMD.
		                        		
		                        		
		                        		
		                        	
4.Impact of childhood trauma on internet addiction in medical students: the mediating role of perceived stress
Xiaohong PENG ; Xiaoyuan LIAO ; Dantong WU ; Yanyin ZHOU ; Yelu LIU ; Yuxiang WANG ; Luoya ZHANG ; Juan DENG ; Yanjie PENG ; Kezhi LIU ; Jing CHEN ; Wei LEI
Sichuan Mental Health 2025;38(3):267-272
		                        		
		                        			
		                        			BackgroundWith the rapid development of the networking technologies, internet addiction has increasingly become a serious mental health issue. Previous studies have revealed the link between childhood trauma and internet addiction, while the mediating role of perceived stress in this link is not yet clear. ObjectiveTo investigate the role of medical students' perceived stress in the relationship between childhood trauma and internet addiction, so as to provide references for the intervention of internet addiction. MethodsFrom February to March 2023, a random sampling technique was used to select 1 232 undergraduate students from the School of Clinical Medical Sciences of Southwest Medical University as research subjects. The Childhood Trauma Questionnaire-Short Form (CTQ-SF), Perceived Stress Scale (PSS), Internet Gaming Disorder Scale (IGDS), and Bergen Social Media Addiction Scale (BSMAS) were used for assessment. Pearson's correlation coefficients were calculated. The mediation effect of perceived stress in the relationship between childhood trauma and internet addiction was tested using Model 4 in the SPSS Process 4.1, and Bootstrapping procedure involving 5 000 replicates was employed to confirm the statistical significance. ResultsA total of 1 016 (82.47%) valid completed questionnaires were gathered. The CTQ-SF scores of medical students were positively correlated with PSS scores, IGD scores, and BSMAS scores (r=0.583, 0.474, 0.465, P<0.01). PSS scores were positively correlated with IGD scores and BSMAS scores (r=0.369, 0.479, P<0.01). Childhood trauma in medical students was found to positively predict perceived stress (β=0.191, P<0.01), social media addiction (β=0.160, P<0.01), and internet gaming disorder (β=0.106, P<0.01). Perceived stress played a significant mediating role in the relationship between childhood trauma and internet gaming disorder, indirect effect value was 0.018 (95% CI: 0.009~0.027), accounting for 16.98%. Perceived stress also exhibited a significant mediating role in the relationship between childhood trauma and social media addiction, indirect effect value was 0.063 (95% CI: 0.048~0.079), accounting for 39.38%. ConclusionChildhood trauma in medical students may affect internet gaming disorder and social media addiction through perceived stress. [Funded by 2022 Annual Research Project of Sichuan Applied Psychology Research Center,(number,CSXL-22102)] 
		                        		
		                        		
		                        		
		                        	
5.Analysis of health-related lifestyles among primary and secondary school students in nutrition improvement program regions of China between 2021 and 2023
Chinese Journal of School Health 2025;46(6):788-791
		                        		
		                        			Objective:
		                        			To analyze the features of unhealthy lifestyle patterns among primary and secondary school students in the nutrition improvement program for rural compulsory education students (NIPRCES) areas in China in 2021 and 2023, so as to provide data support for lifestyle promotion and healthy development among primary and secondary school students.
		                        		
		                        			Methods:
		                        			Adopting a cluster random sampling method, data on primary and secondary students aged 7-15 years from nutrition and health surveillance of China NIPRCES in 2021 and 2023 were collected. The prevalence of unhealthy lifestyles among primary and secondary students such as physical inactivity, outdoor inactivity, excessive screen time, and sleep deprivation by gender, school section, urban/rural, and region were analyzed. The reporting rates of the above indicators among primary and secondary students were compared by  Chi-square test.
		                        		
		                        			Results:
		                        			In 2021 and 2023, the rates of moderate to vigorous physical inactivity among primary and secondary school students were 79.2% and 80.4%, the rates of  outdoor inactivity were 42.8% and 49.3%, the rates of  excessive video time were 2.6% and 2.9%, the rates of  sleep deprivation were 32.9% and 22.6%, and the differences were statistically significant( χ 2=51.86,1 071.48,18.36,3 296.99, P <0.05). In 2023, the rate of outdoor inactivity for primary and secondary students increased by 6.5 percentage points compared with 2021, and the rate of sleep deprivation decreased by 10.3 percentage points compared with that in 2021. In 2021 and 2023, the reporting rates of moderate to vigorous physical inactivity, outdoor inactivity, and sleep deprivation among girls and junior high school students were higher than those among boys ( χ 2=174.41,180.11; 175.75, 85.46 ;92.22,151.35) and elementary school students ( χ 2=136.64,5.75; 40.55,4.71;162.80,3 291.61); the reporting rates of moderate to vigorous physical inactivity( χ 2=194.43,118.60) and sleep deprivation ( χ 2=969.66,983.72) among urban students were higher than those among rural students; the reporting rates of excessive video time for boys and junior high school students were higher than those for girls ( χ 2=103.62,84.85) and elementary school students ( χ 2=810.09,626.51)( P <0.05). From a regional distribution perspective, the reporting rates of moderato to vigorous physical inactivity, outdoor inactivity, and excessive video time among primary and seconday school students in the central and western regions were lower than those in the eastern region ( χ 2= 663.44,302.78; 356.97,82.10;50.89,81.83) ( P <0.05).
		                        		
		                        			Conclusions
		                        			Unhealthy lifestyles remain prevalent among primary and secondary students in NIPRCES areas of China. These findings underscore the need to strengthen policy implementation for promoting healthy lifestyles among primary and secondary school students.
		                        		
		                        		
		                        		
		                        	
6.An overview of real-world study in clinical transfusion
Jiashun GONG ; Fengxia LIU ; Xueyuan HUANG ; Hang DONG ; Chunhong DU ; Juan WANG ; Rong HUANG ; Rong GUI
Chinese Journal of Blood Transfusion 2025;38(7):991-996
		                        		
		                        			
		                        			Real-world study (RWS), based on multi-source data from real medical environments, is gradually becoming an important supplement to traditional randomized controlled trials, and its application in the field of transfusion medicine is becoming increasingly widespread. This article systematically reviews the definition and methodological system of RWS, examines its application cases in clinical blood transfusion research, and discusses the advantages, limitations, and future research directions of RWS, aiming to provide a reference for evidence-based research in blood transfusion medicine.
		                        		
		                        		
		                        		
		                        	
7.Comparison of the efficacy of remimazolam and propofol in the induction and maintenance of general anesthesia in elderly patients undergoing thoracoscopic lobectomy
Chun LIU ; Juan HU ; Yu HUANG ; Jinqiu YANG ; Junjie LI ; Ping YANG ; Pengfei PAN
China Pharmacy 2025;36(16):2040-2045
		                        		
		                        			
		                        			OBJECTIVE To compare the clinical efficacy and safety of remimazolam and propofol in general anesthesia induction and maintenance for elderly patients undergoing thoracoscopic lobectomy. METHODS A total of 86 elderly lung cancer patients who underwent thoracoscopic lobectomy at Chongqing University Three Gorges Hospital from February to July 2024 were selected and divided into the propofol group and the remimazolam group according to the randomized numerical table method, with 43 cases in each group. During anesthesia induction, patients in the propofol group and the remimazolam group were intravenously administered 2 mg/kg of Propofol medium- and long-chain fat emulsion injection or 0.25 mg/kg of Remimazolam tosilate for injection, respectively; during anesthesia maintenance, the two groups received intravenous infusion of 6-10 mg/(kg·h) of Propofol medium- and long- chain fat emulsion injection or 1-3 mg/(kg·h) of Remimazolam tosilate for injection, respectively. The anesthesia effects, anesthesia-related indicators, intraoperative opioid and muscle relaxant dosages, Ramsay sedation score, numerical rating scale (NRS) score, and hemodynamic parameters were compared between the two groups, and the occurrence of adverse drug reactions was recorded. RESULTS A total of 41 patients in the propofol group and 43 patients in the remimazolam group completed the trial. The proportion of patients with grade Ⅰ anesthesia effect in the remimazolam group was significantly higher than that in the propofol group, while the proportion of patients with grade Ⅱ anesthesia effect was significantly lower than that in the propofol group (P<0.05). In this group, the disappearance time of eyelash reflex, the time taken for the bispectral index to drop to 60, and the Ramsay sedation scores (2 and 6 hours after operation) were all significantly prolonged or increased, while the recovery time, NRS scores (2 and 6 hours after operation), and the incidence of intraoperative hypotension were all significantly shortened or reduced; moreover, the improvements of the above sedation/NRS scores exhibited a time-dependent pattern within 2 to 24 hours after operation (P<0.05). Compared with before anesthesia induction (T0), the heart rate [except at 2 min after medication (T1), 60 min after anesthesia (T4), and at the end of surgery (T5) in the remimazolam group] and mean arterial pressure [except at T1 in the remimazolam group] of patients in both groups significantly decreased at T1, 5 min after medication (T2), at the start of surgery (T3), T4, and T5 (P<0.05). Meanwhile, regional cerebral oxygen saturation significantly increased in both groups. Furthermore, the heart rate and mean arterial pressure of patients in the remimazolam group were significantly higher than those in the propofol group at T1, T2 and T4 (P<0.05). No statistically significant differences were observed between the two groups in terms of postanesthesia care unit stay time, dosage of opioids and muscle relaxants, regional cerebral oxygen saturation, or peripheral oxygen saturation at various time points (P>0.05). CONCLUSIONS Compared to propofol, remimazolam demonstrates superior anesthesia effects when used for the induction and maintenance of general anesthesia in elderly patients undergoing thoracoscopic lobectomy. It not only provides more stable intraoperative hemodynamics and shortens the postoperative recovery time but also effectively reduces the incidence of intraoperative hypotension.
		                        		
		                        		
		                        		
		                        	
8.Prediction of Potential Regulatory Pathways Involving The Notch Signaling Pathway and Its Associated Non-coding RNAs in Alzheimer’s Disease Based on Database Analysis
Meng-Lin LÜ ; Xing-Ran LIU ; Xian-Juan KOU
Progress in Biochemistry and Biophysics 2025;52(8):1942-1957
		                        		
		                        			
		                        			Alzheimer’s disease (AD) is a chronic, progressive, and irreversible neurodegenerative disorder that typically begins with a subtle onset and progresses slowly. Pathologically, it is characterized by two hallmark features: the extracellular accumulation of amyloid β-protein (Aβ), forming senile plaques, and the intracellular hyperphosphorylation of tau protein, resulting in neurofibrillary tangles (NFTs). These pathological changes are accompanied by substantial neuronal and synaptic loss, particularly in critical brain regions such as the cerebral cortex and hippocampus. Clinically, AD presents as a gradual decline in memory, language abilities, and spatial orientation, significantly impairing the quality of life of affected individuals. With the aging population steadily increasing in China, the incidence of AD is rising, making it a major public health concern that requires urgent attention. The growing societal and economic burden of AD underscores the pressing need to identify effective diagnostic biomarkers and develop novel therapeutic strategies. Among the various molecular signaling pathways involved in neurological disorders, the Notch signaling pathway is especially noteworthy due to its evolutionary conservation and regulatory roles in cell proliferation, differentiation, development, and apoptosis. In the central nervous system, Notch signaling is essential for neurodevelopment and synaptic plasticity and has been implicated in several neurodegenerative processes. Although some studies suggest that Notch signaling may influence AD-related pathology, its precise role in AD remains poorly understood. In particular, the interaction between Notch signaling and non-coding RNAs (ncRNAs)—key regulators of gene expression—has received limited attention. NcRNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are known to exert extensive regulatory functions at both transcriptional and post-transcriptional levels. Dysregulation of these molecules has been widely associated with various diseases, including cancers, cardiovascular conditions, and neurodegenerative disorders. Notably, interactions between ncRNAs and major signaling pathways such as Notch can produce widespread biological effects. While such interactions have been increasingly reported in several disease models, comprehensive studies investigating the regulatory relationship between Notch signaling and ncRNAs in the context of AD remain scarce. Given the capacity of ncRNAs to modulate signaling cascades and form complex regulatory networks, a deeper understanding of their crosstalk with the Notch pathway could provide novel insights into AD pathogenesis and reveal potential targets for diagnosis and treatment. In this study, we investigated the regulatory landscape involving the Notch signaling pathway and associated ncRNAs in AD using bioinformatics approaches. By integrating data from multiple public databases, we systematically identified significantly dysregulated Notch pathway-related genes and their interacting ncRNAs in AD. Based on this analysis, we constructed a lncRNA-miRNA-mRNA regulatory network to elucidate the potential mechanisms linking Notch signaling to ncRNA-mediated gene regulation in AD pathogenesis. Furthermore, we explored the internal relationships and molecular mechanisms within this network and assessed the feasibility and clinical relevance of these molecules as early diagnostic biomarkers and potential therapeutic targets for AD. This study aims to deepen our understanding of the molecular basis of AD and offer novel strategies for its diagnosis and treatment. 
		                        		
		                        		
		                        		
		                        	
9.Regulation Mechanism of Eukaryotic Translation Initiation Factor 5A in Epithelial-mesenchymal Transition
Can-Ming PENG ; Juan-Ping WANG ; Sen LIU
Progress in Biochemistry and Biophysics 2025;52(8):2018-2032
		                        		
		                        			
		                        			Eukaryotic translation initiation factor 5A (eIF5A) is the only known protein in eukaryotes that contains a hydroxyputrescine lysine modification. Only the modified form of eIF5A is biologically active and is widely involved in protein translation, mRNA degradation, autophagy, and other intracellular processes. Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells transform into mesenchymal phenotype cells through a highly regulated program. It plays a key role in embryonic development, tissue regeneration, and wound healing. Based on its biological functions, EMT can be classified into three types: I, II, and III. Type III EMT is the core mechanism underlying malignant tumor cell invasion and metastasis. This EMT mechanism involves the canonical pathway induced by transforming growth factor-β (TGF-β) and is regulated by various growth factors (TRAF6, EGF, IGF, HGF, VEGF), transcription factors (Twist, Slug, NF-κB, E12/E47, SIP1, ZEB1, etc.), and signaling pathways such as Wnt/β-catenin and PEAK1. eIF5A can influence tumor cell proliferation, invasion, and metastasis by regulating EMT-related signaling pathways. The known signaling pathways through which eIF5A regulates EMT include the canonical Smad signaling pathway and non-canonical pathways such as Rho/Rac1, Twist, STAT3, and MAT1. Additionally, certain miRNA family members, such as miR-30b, miR-599, and miR-203, can bind to the 3'-UTR of eIF5A2, inhibiting its expression and subsequently suppressing the EMT process in cancer cells, including gastric cancer and colorectal cancer. GC7, an inhibitor targeting the key enzyme DHPS involved in eIF5A modification, has been shown to reverse the EMT mechanism in oral squamous cell carcinoma, lung cancer, and breast cancer by regulating cytokine-mediated signaling pathways, including HIF-1α, STAT3/c-MYC, and Twist. However, to date, no inhibitors directly targeting eIF5A have been developed. In recent years, the mechanism of eIF5A activation catalyzed by DHPS and DOHH has become increasingly clear. As the only protein involved in lysine deoxyhydroxymethylation, DHPS may play a more critical role than eIF5A in the overall signal transduction process. Through in-depth analysis of the DHPS protein structure and its active site, researchers have shifted their approach to DHPS inhibitor development from substrate analog inhibitors (such as GC7, CNI-1493, DHSI-15, etc.) to allosteric inhibitors (11g, 26d, 8m, GL-1, etc.). GC7 is not suitable for clinical trials due to its lack of specificity and low bioavailability, and the therapeutic potential of novel allosteric inhibitors has yet to be clarified. Therefore, there is a significant gap in the development of covalent drugs targeting DHPS for cancer treatment in clinical settings. This paper reviews the research progress on eIF5A in regulating EMT, focusing on the molecular mechanisms by which eIF5A influences tumor cell invasion and migration. It also discusses the characteristics and current limitations of inhibitors targeting the hypusine pathway, aiming to provide insights for studying tumor metastasis mechanisms and drug discovery. 
		                        		
		                        		
		                        		
		                        	
10.The Regulatory Mechanisms of Dopamine Homeostasis in Behavioral Functions Under Microgravity
Xin YANG ; Ke LI ; Ran LIU ; Xu-Dong ZHAO ; Hua-Lin WANG ; Lan-Qun MAO ; Li-Juan HOU
Progress in Biochemistry and Biophysics 2025;52(8):2087-2102
		                        		
		                        			
		                        			As China accelerates its efforts in deep space exploration and long-duration space missions, including the operationalization of the Tiangong Space Station and the development of manned lunar missions, safeguarding astronauts’ physiological and cognitive functions under extreme space conditions becomes a pressing scientific imperative. Among the multifactorial stressors of spaceflight, microgravity emerges as a particularly potent disruptor of neurobehavioral homeostasis. Dopamine (DA) plays a central role in regulating behavior under space microgravity by influencing reward processing, motivation, executive function and sensorimotor integration. Changes in gravity disrupt dopaminergic signaling at multiple levels, leading to impairments in motor coordination, cognitive flexibility, and emotional stability. Microgravity exposure induces a cascade of neurobiological changes that challenge dopaminergic stability at multiple levels: from the transcriptional regulation of DA synthesis enzymes and the excitability of DA neurons, to receptor distribution dynamics and the efficiency of downstream signaling pathways. These changes involve downregulation of tyrosine hydroxylase in the substantia nigra, reduced phosphorylation of DA receptors, and alterations in vesicular monoamine transporter expression, all of which compromise synaptic DA availability. Experimental findings from space analog studies and simulated microgravity models suggest that gravitational unloading alters striatal and mesocorticolimbic DA circuitry, resulting in diminished motor coordination, impaired vestibular compensation, and decreased cognitive flexibility. These alterations not only compromise astronauts’ operational performance but also elevate the risk of mood disturbances and motivational deficits during prolonged missions. The review systematically synthesizes current findings across multiple domains: molecular neurobiology, behavioral neuroscience, and gravitational physiology. It highlights that maintaining DA homeostasis is pivotal in preserving neuroplasticity, particularly within brain regions critical to adaptation, such as the basal ganglia, prefrontal cortex, and cerebellum. The paper also discusses the dual-edged nature of DA plasticity: while adaptive remodeling of synapses and receptor sensitivity can serve as compensatory mechanisms under stress, chronic dopaminergic imbalance may lead to maladaptive outcomes, such as cognitive rigidity and motor dysregulation. Furthermore, we propose a conceptual framework that integrates homeostatic neuroregulation with the demands of space environmental adaptation. By drawing from interdisciplinary research, the review underscores the potential of multiple intervention strategies including pharmacological treatment, nutritional support, neural stimulation techniques, and most importantly, structured physical exercise. Recent rodent studies demonstrate that treadmill exercise upregulates DA transporter expression in the dorsal striatum, enhances tyrosine hydroxylase activity, and increases DA release during cognitive tasks, indicating both protective and restorative effects on dopaminergic networks. Thus, exercise is highlighted as a key approach because of its sustained effects on DA production, receptor function, and brain plasticity, making it a strong candidate for developing effective measures to support astronauts in maintaining cognitive and emotional stability during space missions. In conclusion, the paper not only underscores the centrality of DA homeostasis in space neuroscience but also reflects the authors’ broader academic viewpoint: understanding the neurochemical substrates of behavior under microgravity is fundamental to both space health and terrestrial neuroscience. By bridging basic neurobiology with applied space medicine, this work contributes to the emerging field of gravitational neurobiology and provides a foundation for future research into individualized performance optimization in extreme environments. 
		                        		
		                        		
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail