1.STING-STAT6 Signaling PathwayPromotes IL-4+ and IFN-α+ FibroticT Cell Activation and Exacerbates Scleroderma in SKG Mice
Kun Hee LEE ; Jin Seok WOO ; Ha Yeon JEONG ; Jeong Won CHOI ; Chul Hwan BANG ; Jeehee YOUN ; Sung-Hwan PARK ; Mi-La CHO
Immune Network 2024;24(5):e37-
Systemic sclerosis (SS) is an autoimmune disease and pathological mechanisms of SS are unclear. In this study, we investigated the role of T cells in the progression of SS using SKG mice and humanized mice. SKG mice have a spontaneous point mutation in ZAP70. We induced scleroderma in SKG mice and a humanized SS mouse model to assess whether T cell-mediated immune responses induce SS. As a result, we found increased dermal thickness, fibrosis, and lymphocyte infiltration in skin tissue in SKG SS mice compared to BALB/c mice (control). Also, blood cytokine level, including IL-4- and IFN-α which are produced by CD4+ T cells via STIM1/STING/STAT6/IRF3 signaling pathways, were increased in SKG mice. Interestingly, skin fibrosis was reduced by inhibiting STING pathway in skin fibroblast.Next, we demonstrated the pathophysiological role of IL-4 and IFN-α in skin fibrosis using a humanized SS mouse model and found increased IL-4- and IFN-α-producing CD4+ T cells and fibrosis. In this study, we found that STING-induced production of IL-4- and type I IFN by CD4+ T cells is a key factor in mouse model and humanized mouse model of SS. Our findings suggest that the STING/STAT6/IRF3 signaling pathways are potential therapeutic targets in SS.
2.Photobiomodulation therapy in neurodegenerative diseases:mechanisms, clinical applications, and future directions
Medical Lasers 2024;13(2):90-97
Photobiomodulation (PBM) therapy, using red to near-infrared light (600-1,000 nm), is becoming a promising non-invasive treatment for neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. This review examines the mechanistic insights and the preclinical and clinical evidence supporting the efficacy of PBM in enhancing mitochondrial function, reducing oxidative stress, and modulating neuroinflammation. The impact of PBM therapy on cellular energy production, gene expression, and inflammatory responses provides a comprehensive therapeutic approach targeting multiple pathological pathways in neurodegenerative conditions. Preclinical studies demonstrated the potential of PBM therapy in improving neuronal health and cognitive function, while early clinical trials revealed significant benefits in motor performance and cognitive outcomes with minimal adverse effects. By highlighting the necessity for personalized PBM therapy and its integration with other therapeutic modalities, the literature aims to optimize the treatment efficacy and expand the clinical applications of PBM technology. Further large-scale randomized controlled trials are essential to validate these findings and establish standardized treatment protocols, as current promising results position PBM as a viable and innovative therapeutic option for managing and potentially altering the course of neurodegenerative diseases.
3.Restoring mitochondrial dynamics in neuronal health through photobiomodulation
Medical Lasers 2024;13(3):109-118
Mitochondrial dysfunction is a critical factor in the pathogenesis of neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis. Disruptions in mitochondrial fusion and fission lead to the accumulation of damaged mitochondria and elevated oxidative stress, contributing to neuronal cell death. Photobiomodulation (PBM) therapy, utilizing low-level laser light or light-emitting diodes, has shown promise in restoring mitochondrial dynamics by stimulating cytochrome c oxidase in the mitochondrial respiratory chain. This enhances adenosine triphosphate production, promotes mitochondrial fusion, and reduces fission. Additionally, PBM attenuates neuroinflammation by reducing pro-inflammatory cytokine and reactive oxygen species production, creating a favorable environment for neuronal survival. This review explores the mechanisms through which PBM influences mitochondrial dynamics and its therapeutic potential in neurodegenerative diseases. By restoring mitochondrial balance and reducing neuroinflammation, PBM offers a unique approach to mitigating mitochondrial dysfunction and enhancing neuronal function.
4.STING-STAT6 Signaling PathwayPromotes IL-4+ and IFN-α+ FibroticT Cell Activation and Exacerbates Scleroderma in SKG Mice
Kun Hee LEE ; Jin Seok WOO ; Ha Yeon JEONG ; Jeong Won CHOI ; Chul Hwan BANG ; Jeehee YOUN ; Sung-Hwan PARK ; Mi-La CHO
Immune Network 2024;24(5):e37-
Systemic sclerosis (SS) is an autoimmune disease and pathological mechanisms of SS are unclear. In this study, we investigated the role of T cells in the progression of SS using SKG mice and humanized mice. SKG mice have a spontaneous point mutation in ZAP70. We induced scleroderma in SKG mice and a humanized SS mouse model to assess whether T cell-mediated immune responses induce SS. As a result, we found increased dermal thickness, fibrosis, and lymphocyte infiltration in skin tissue in SKG SS mice compared to BALB/c mice (control). Also, blood cytokine level, including IL-4- and IFN-α which are produced by CD4+ T cells via STIM1/STING/STAT6/IRF3 signaling pathways, were increased in SKG mice. Interestingly, skin fibrosis was reduced by inhibiting STING pathway in skin fibroblast.Next, we demonstrated the pathophysiological role of IL-4 and IFN-α in skin fibrosis using a humanized SS mouse model and found increased IL-4- and IFN-α-producing CD4+ T cells and fibrosis. In this study, we found that STING-induced production of IL-4- and type I IFN by CD4+ T cells is a key factor in mouse model and humanized mouse model of SS. Our findings suggest that the STING/STAT6/IRF3 signaling pathways are potential therapeutic targets in SS.
5.STING-STAT6 Signaling PathwayPromotes IL-4+ and IFN-α+ FibroticT Cell Activation and Exacerbates Scleroderma in SKG Mice
Kun Hee LEE ; Jin Seok WOO ; Ha Yeon JEONG ; Jeong Won CHOI ; Chul Hwan BANG ; Jeehee YOUN ; Sung-Hwan PARK ; Mi-La CHO
Immune Network 2024;24(5):e37-
Systemic sclerosis (SS) is an autoimmune disease and pathological mechanisms of SS are unclear. In this study, we investigated the role of T cells in the progression of SS using SKG mice and humanized mice. SKG mice have a spontaneous point mutation in ZAP70. We induced scleroderma in SKG mice and a humanized SS mouse model to assess whether T cell-mediated immune responses induce SS. As a result, we found increased dermal thickness, fibrosis, and lymphocyte infiltration in skin tissue in SKG SS mice compared to BALB/c mice (control). Also, blood cytokine level, including IL-4- and IFN-α which are produced by CD4+ T cells via STIM1/STING/STAT6/IRF3 signaling pathways, were increased in SKG mice. Interestingly, skin fibrosis was reduced by inhibiting STING pathway in skin fibroblast.Next, we demonstrated the pathophysiological role of IL-4 and IFN-α in skin fibrosis using a humanized SS mouse model and found increased IL-4- and IFN-α-producing CD4+ T cells and fibrosis. In this study, we found that STING-induced production of IL-4- and type I IFN by CD4+ T cells is a key factor in mouse model and humanized mouse model of SS. Our findings suggest that the STING/STAT6/IRF3 signaling pathways are potential therapeutic targets in SS.
6.Oxidized LDL Accelerates CartilageDestruction and Inflammatory Chondrocyte Death in Osteoarthritis by Disrupting the TFEB-Regulated Autophagy-Lysosome Pathway
Jeong Su LEE ; Yun Hwan KIM ; JooYeon JHUN ; Hyun Sik NA ; In Gyu UM ; Jeong Won CHOI ; Jin Seok WOO ; Seung Hyo KIM ; Asode Ananthram SHETTY ; Seok Jung KIM ; Mi-La CHO
Immune Network 2024;24(3):e15-
Osteoarthritis (OA) involves cartilage degeneration, thereby causing inflammation and pain. Cardiovascular diseases, such as dyslipidemia, are risk factors for OA; however, the mechanism is unclear. We investigated the effect of dyslipidemia on the development of OA. Treatment of cartilage cells with low-density lipoprotein (LDL) enhanced abnormal autophagy but suppressed normal autophagy and reduced the activity of transcription factor EB (TFEB), which is important for the function of lysosomes. Treatment of LDL-exposed chondrocytes with rapamycin, which activates TFEB, restored normal autophagy. Also, LDL enhanced the inflammatory death of chondrocytes, an effect reversed by rapamycin. In an animal model of hyperlipidemia-associated OA, dyslipidemia accelerated the development of OA, an effect reversed by treatment with a statin, an anti-dyslipidemia drug, or rapamycin, which activates TFEB. Dyslipidemia reduced the autophagic flux and induced necroptosis in the cartilage tissue of patients with OA. The levels of triglycerides, LDL, and total cholesterol were increased in patients with OA compared to those without OA. The C-reactive protein level of patients with dyslipidemia was higher than that of those without dyslipidemia after total knee replacement arthroplasty. In conclusion, oxidized LDL, an important risk factor of dyslipidemia, inhibited the activity of TFEB and reduced the autophagic flux, thereby inducing necroptosis in chondrocytes.
7.Clinical Characteristics and Treatment Outcomes of Pulmonary Diseases Caused by Coinfections With Multiple Nontuberculous Mycobacterial Species
Sol KIM ; A La WOO ; Seung Hyun YONG ; Ah Young LEEM ; Su Hwan LEE ; Sang Hoon LEE ; Song Yee KIM ; Kyungsoo CHUNG ; Eun Young KIM ; Ji Ye JUNG ; Young Ae KANG ; Moo Suk PARK ; Young Sam KIM ; Youngmok PARK
Journal of Korean Medical Science 2024;39(20):e167-
Background:
Coinfections with multiple nontuberculous mycobacterial (NTM) species have not been widely studied. We aimed to evaluate the clinical characteristics and treatment outcomes in patients with NTM-pulmonary disease (PD) caused by coinfection with multiple NTM species.
Methods:
We retrospectively reviewed patients with NTM-PD at a tertiary referral hospital in Korea between March 2012 and December 2018. Coinfection was defined as two or more species of NTM pathogens isolated from the same respiratory specimen or different specimens within three months.
Results:
Among 1,009 patients with NTM-PD, 147 (14.6%) NTM coinfections were observed (average age 64.7 years, 69.4% women). NTM species were identified more frequently (median 6 vs. 3 times, P < 0.001) in the coinfection group than in the single species group, and follow-up duration was also longer in the coinfection group (median 44.9 vs. 27.1 months, P < 0.001). Mycobacterium avium complex (MAC) and M. abscessus and M. massiliense (MAB) were the dominant combinations (n = 71, 48.3%). For patients treated for over six months in the MAC plus MAB group (n = 31), sputum culture conversion and microbiological cure were achieved in 67.7% and 41.9% of patients, respectively. We divided the MAC plus MAB coinfection group into three subgroups according to the target mycobacteria; however, no statistical differences were found in the treatment outcomes.
Conclusion
In NTM-PD cases, a significant number of multiple NTM species coinfections occurred. Proper identification of all cultured NTM species through follow-up is necessary to detect multispecies coinfections. Further research is needed to understand the nature of NTM-PD in such cases.
8.Unenhanced Breast MRI With Diffusion-Weighted Imaging for Breast Cancer Detection: Effects of Training on Performance and Agreement of Subspecialty Radiologists
Yeon Soo KIM ; Su Hyun LEE ; Soo-Yeon KIM ; Eun Sil KIM ; Ah Reum PARK ; Jung Min CHANG ; Vivian Youngjean PARK ; Jung Hyun YOON ; Bong Joo KANG ; Bo La YUN ; Tae Hee KIM ; Eun Sook KO ; A Jung CHU ; Jin You KIM ; Inyoung YOUN ; Eun Young CHAE ; Woo Jung CHOI ; Hee Jeong KIM ; Soo Hee KANG ; Su Min HA ; Woo Kyung MOON
Korean Journal of Radiology 2024;25(1):11-23
Objective:
To investigate whether reader training improves the performance and agreement of radiologists in interpreting unenhanced breast magnetic resonance imaging (MRI) scans using diffusion-weighted imaging (DWI).
Materials and Methods:
A study of 96 breasts (35 cancers, 24 benign, and 37 negative) in 48 asymptomatic women was performed between June 2019 and October 2020. High-resolution DWI with b-values of 0, 800, and 1200 sec/mm 2 was performed using a 3.0-T system. Sixteen breast radiologists independently reviewed the DWI, apparent diffusion coefficient maps, and T1-weighted MRI scans and recorded the Breast Imaging Reporting and Data System (BI-RADS) category for each breast. After a 2-h training session and a 5-month washout period, they re-evaluated the BI-RADS categories. A BI-RADS category of 4 (lesions with at least two suspicious criteria) or 5 (more than two suspicious criteria) was considered positive.The per-breast diagnostic performance of each reader was compared between the first and second reviews. Inter-reader agreement was evaluated using a multi-rater κ analysis and intraclass correlation coefficient (ICC).
Results:
Before training, the mean sensitivity, specificity, and accuracy of the 16 readers were 70.7% (95% confidence interval [CI]: 59.4–79.9), 90.8% (95% CI: 85.6–94.2), and 83.5% (95% CI: 78.6–87.4), respectively. After training, significant improvements in specificity (95.2%; 95% CI: 90.8–97.5; P = 0.001) and accuracy (85.9%; 95% CI: 80.9–89.8; P = 0.01) were observed, but no difference in sensitivity (69.8%; 95% CI: 58.1–79.4; P = 0.58) was observed. Regarding inter-reader agreement, the κ values were 0.57 (95% CI: 0.52–0.63) before training and 0.68 (95% CI: 0.62–0.74) after training, with a difference of 0.11 (95% CI: 0.02–0.18; P = 0.01). The ICC was 0.73 (95% CI: 0.69–0.74) before training and 0.79 (95% CI: 0.76–0.80) after training (P = 0.002).
Conclusion
Brief reader training improved the performance and agreement of interpretations by breast radiologists using unenhanced MRI with DWI.
9.Background Breast Parenchymal Signal During Menstrual Cycle on Diffusion-Weighted MRI: A Prospective Study in Healthy Premenopausal Women
Yeon Soo KIM ; Bo La YUN ; A Jung CHU ; Su Hyun LEE ; Hee Jung SHIN ; Sun Mi KIM ; Mijung JANG ; Sung Ui SHIN ; Woo Kyung MOON
Korean Journal of Radiology 2024;25(6):511-517
Objective:
To prospectively investigate the influence of the menstrual cycle on the background parenchymal signal (BPS) and apparent diffusion coefficient (ADC) of the breast on diffusion-weighted MRI (DW-MRI) in healthy premenopausal women.
Materials and Methods:
Seven healthy premenopausal women (median age, 37 years; range, 33–49 years) with regular menstrual cycles participated in this study. DW-MRI was performed during each of the four phases of the menstrual cycle (four examinations in total). Three radiologists independently assessed the BPS visual grade on images with b-values of 800 sec/mm2 (b800), 1200 sec/mm2 (b1200), and a synthetic 1500 sec/mm2 (sb1500). Additionally, one radiologist conducted a quantitative analysis to measure the BPS volume (%) and ADC values of the BPS (ADCBPS) and fibroglandular tissue (ADCFGT). Changes in the visual grade, BPS volume (%), ADCBPS, and ADCFGT during the menstrual cycle were descriptively analyzed.
Results:
The visual grade of BPS in seven women varied from mild to marked on b800 and from minimal to moderate on b1200 and sb1500. As the b-value increased, the visual grade of BPS decreased. On b800 and sb1500, two of the seven volunteers showed the highest visual grade in the early follicular phase (EFP). On b1200, three of the seven volunteers showed the highest visual grades in EFP. The BPS volume (%) on b800 and b1200 showed the highest value in three of the six volunteers with dense breasts in EFP. Three of the seven volunteers showed the lowest ADCBPS in the EFP. Four of the seven volunteers showed the highest ADCBPS in the early luteal phase (ELP) and the lowest ADCFGT in the late follicular phase (LFP).
Conclusion
Most volunteers did not exhibit specific BPS patterns during their menstrual cycles. However, the highest BPS and lowest ADCBPS were more frequently observed in EFP than in the other menstrual cycle phases, whereas the highest ADCBPS was more common in ELP. The lowest ADCFGT was more frequent in LFP.
10.Sleep Duration, Comorbidities, and Mortality in Korean Health Examinees: A Prospective Cohort Study
Sukhong MIN ; Woo-Kyoung SHIN ; Katherine De la TORRE ; Dan HUANG ; Hyung-Suk YOON ; Aesun SHIN ; Ji-Yeob CHOI ; Daehee KANG
Journal of Preventive Medicine and Public Health 2023;56(5):458-466
Objectives:
The association between long sleep duration and mortality is frequently attributed to the confounding influence of comorbidities. Nevertheless, past efforts to account for comorbidities have yielded inconsistent outcomes. The objective of this study was to evaluate this relationship using a large prospective cohort in Korea.
Methods:
The study included 114 205 participants from the Health Examinees Study, who were followed for a median of 9.1 years. A composite comorbidity score was developed to summarize the effects of 21 diseases. Using Cox proportional hazards regression, hazard ratios (HRs) and 95% confidence intervals (CIs) for all-cause, cancer, and cardiovascular mortality associated with sleep duration were estimated. These estimates were adjusted for socio-demographic factors, lifestyle factors, body mass index, and comorbidity score. Additionally, a stratified analysis by subgroups with and without comorbidities was conducted.
Results:
Throughout the follow-up period, 2675 deaths were recorded. After all adjustments, an association was observed between a sleep duration of 8 hours or more and all-cause mortality (HR, 1.10; 95% CI, 1.01 to 1.20). However, no such association was detected in the stratified analysis for the subgroups based on comorbidity status.
Conclusions
Long sleep duration was found to be associated with all-cause mortality among Koreans, even after adjusting for comorbidities. Additional studies are required to explore the mechanism underlying the association between sleep duration and major causes of mortality.

Result Analysis
Print
Save
E-mail