1.NKD1 promotes glucose uptake in colon cancer cells by activating YWHAE transcription.
Qian LIU ; Yuyang DAI ; Huayi YU ; Ying SHEN ; Jianzhong DENG ; Wenbin LU ; Jianhua JIN
Journal of Southern Medical University 2023;43(4):585-589
OBJECTIVE:
Bo investigate the regulatory relationship between NKD1 and YWHAE and the mechanism of NKD1 for promoting tumor cell proliferation.
METHODS:
HCT116 cells transfected with pcDNA3.0-NKD1 plasmid, SW620 cells transfected with NKD1 siRNA, HCT116 cells with stable NKD1 overexpression (HCT116-NKD1 cells), SW620 cells with nkd1knockout (SW620-nkd1-/- cells), and SW620-nkd1-/- cells transfected with pcDNA3.0-YWHAE plasmid were examined for changes in mRNA and protein expression levels of YWHAE using qRT-PCR and Western blotting. Chromatin immunoprecipitation (ChIP) assay was used to detect the binding of NKD1 to the promoter region of YWHAE gene. The regulatory effect of NKD1 on YWHAE gene promoter activity was analyzed by dual-luciferase reporter gene assay, and the interaction between NKD1 and YWHAE was analyzed with immunofluorescence assay. The regulatory effect of NKD1 on glucose uptake was examined in the tumor cells.
RESULTS:
In HCT116 cells, overexpression of NKD1 significantly enhanced the expression of YWHAE at both the mRNA and protein levels, while NKD1 knockout decreased its expression in SW620 cells (P < 0.001). ChIP assay showed that NKD1 protein was capable of binding to the YWHAE promoter sequence; dual luciferase reporter gene assay showed that NKD1 overexpression (or knockdown) in the colon cancer cells significantly enhanced (or reduced) the transcriptional activity of YWHAE promoter (P < 0.05). Immunofluorescence assay demonstrated the binding of NKD1 and YWHAE proteins in colon cancer cells. NKD1 knockout significantly reduced glucose uptake in colon cancer cells (P < 0.01), while YWHAE overexpression restored the glucose uptake in NKD1-knockout cells (P < 0.05).
CONCLUSION
NKD1 protein activates the transcriptional activity of YWHAE gene to promote glucose uptake in colon cancer cells.
Humans
;
Colonic Neoplasms
;
HCT116 Cells
;
Cell Line, Tumor
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
RNA, Messenger
;
Glucose
;
Calcium-Binding Proteins/metabolism*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
14-3-3 Proteins/metabolism*
2.Genetic variation of YWHAE gene-"Switch" of disease control.
Xi JIN ; Minhui DAI ; Yanhong ZHOU
Journal of Central South University(Medical Sciences) 2022;47(1):101-108
YWHAE gene is located on chromosome 17p13.3, and its product 14-3-3epsilon protein belongs to 14-3-3 protein family. As a molecular scaffold, YWHAE participates in biological processes such as cell adhesion, cell cycle regulation, signal transduction and malignant transformation, and is closely related to many diseases. Overexpression of YWHAE in breast cancer can increase the ability of proliferation, migration and invasion of breast cancer cells. In gastric cancer, YWHAE acts as a negative regulator of MYC and CDC25B, which reduces their expression and inhibits the proliferation, migration, and invasion of gastric cancer cells, and enhances YWHAE-mediated transactivation of NF-κB through CagA. In colorectal cancer, YWHAE lncRNA, as a sponge molecule of miR-323a-3p and miR-532-5p, can compete for endogenous RNA through direct interaction with miR-323a-3p and miR-532-5p, thus up-regulating K-RAS/ERK/1/2 and PI3K-AKT signaling pathways and promoting the cell cycle progression of the colorectal cancer. YWHAE not only mediates tumorigenesis as a competitive endogenous RNA, but also affects gene expression through chromosome variation. For example, the FAM22B-YWHAE fusion gene caused by t(10; 17) (q22; p13) may be associated with the development of endometrial stromal sarcoma. At the same time, the fusion transcript of YWHAE and NUTM2B/E may also lead to the occurrence of endometrial stromal sarcoma. To understand the relationship between YWHAE, NUTM2A, and NUTM2B gene rearrangement/fusion and malignant tumor, YWHAE-FAM22 fusion gene/translocation and tumor, YWHAE gene polymorphism and mental illness, as well as the relationship between 17p13.3 region change and disease occurrence. It provides new idea and basis for understanding the effect of YWHAE gene molecular mechanism and genetic variation on the disease progression, and for the targeted for the diseases.
14-3-3 Proteins/metabolism*
;
Breast Neoplasms/genetics*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Cell Transformation, Neoplastic/genetics*
;
Colorectal Neoplasms/genetics*
;
Endometrial Neoplasms
;
Female
;
Gene Expression Regulation, Neoplastic
;
Humans
;
MicroRNAs/genetics*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Sarcoma, Endometrial Stromal/pathology*
;
Stomach Neoplasms/genetics*
;
Transcription Factors/genetics*
;
Translocation, Genetic
3.Gene cloning, induction, and prokaryotic expression of a Sm14-3-3 protein from Salvia miltiorrhiza.
Chen-Jing SHI ; Shi-Wei WANG ; Jia-Ming PENG ; Hai-Yu XU
China Journal of Chinese Materia Medica 2022;47(18):4886-4894
14-3-3 proteins are important proteins in plants, as they regulate plant growth and development and the response to biotic or abiotic stresses. In this study, a 14-3-3 gene(GenBank accession: OM683281) was screened from the cDNA library of the medicinal species Salvia miltiorrhiza by yeast two-hybrid and cloned. The open reading frame(ORF) was 780 bp, encoding 259 amino a cids. Bioinformatics analysis predicted that the protein was a non-transmembrane protein with the molecular formula of C_(1287)H_(2046)N_(346)O_(422)S_9, relative molecular weight of 29.4 kDa, and no signal peptide. Homologous sequence alignment and phylogenetic tree analysis proved that the protein belonged to 14-3-3 family and had close genetic relationship with the 14-3-3 proteins from Arabidopsis thaliana, Oryza sativa, and Nicotiana tabacum. The 14-3-3 gene was ligated to the prokaryotic expression vector pGEX-4 T-1 and then transformed into Escherichia coli BL21 for the expression of recombinant protein. Real-time fluorescent quantitative PCR showed that the expression of this gene was different among roots, stems, leaves, and flowers of S. miltiorrhiza. To be specific, the highest expression was found in leaves, followed by stems, and the lowest expression was detected in flowers. S. miltiorrhiza plants were treated with 15% PEG(simulation of drought), and hormones salicylic acid, methyl jasmonate, and ethephon, respectively, and the expression of 14-3-3 gene peaked at the early stage of induction. Therefore, the gene can quickly respond to abiotic stresses such as drought and plant hormone treatments such as salicylic acid, jasmonic acid, and ethylene. This study lays the foundation for revealing the molecular mechanism of 14-3-3 protein regulating tanshinone biosynthesis and responding to biotic and abiotic stresses.
14-3-3 Proteins/metabolism*
;
Amino Acid Sequence
;
Cloning, Molecular
;
Ethylenes/metabolism*
;
Gene Expression Regulation, Plant
;
Hormones/metabolism*
;
Phylogeny
;
Plant Growth Regulators/pharmacology*
;
Plant Proteins/metabolism*
;
Recombinant Proteins/genetics*
;
Salicylic Acid/metabolism*
;
Salvia miltiorrhiza/metabolism*
5.Effect of MiR-451a on Erythroid Differentiation of K562 Cells under Hypoxia.
Cai-Yan HU ; Hui-Jie ZHANG ; Cheng-Bing FU ; Fang LIU
Journal of Experimental Hematology 2020;28(6):2071-2078
OBJECTIVE:
To investigate the changes of GATA-1 protein expression during erythroid differentiation of K562 cells under hypoxia and how GATA-1 can regulate erythroid differentiation by up-regulating the expression of miR-451a and inhibiting the expression of 14-3-3ζ.
METHODS:
K562 cells were divided into 2 groups: the normoxia group and the hypoxia group, after the induction of hemin for 96 h, the positive cells rate of the benzidine staining, the mRNA expression of γ-globin and the expression of CD235a were detected, and the success of the model was verified. The changes of GATA-1 and miR-451a expression in the above-mentioned 2 groups, the changes of miR-451a expression after over-expressed GATA-1 were detected by Western blot and qRT-PCR. The cells in normoxic group and hypoxia group were divided into negative control group (NC group) and miR-451a over-expression group respectively, and the degree of erythroid differentiation in the four groups was judged according to the corresponding erythroid differentiation indexes, and the expression of 14-3-3ζ was detected by Western blot after over-expressed miR-451a.
RESULTS:
The positive cell rate of benzidine staining, mRNA expression of γ-globin and the expression of CD235a after 96 h induction by K562 cells under hypoxia were significantly higher than 0 h, suggesting that the erythroid differentiation model of K562 cells under hypoxia was replicated successfully. The expression levels of GATA-1 protein and miR-451a in the hypoxic group were significantly higher than that in the normoxic group (P<0.05). The expression level of miR-451a in hypoxia group was significantly higher than that in NC group after overexpressed GATA-1 (P<0.05). After over-expressed of miR-451a under hypoxia, the positive cell rate of benzidine staining, the mRNA expression level of γ-globin and the expression of CD235a were significantly higher than those in NC group (P<0.05). The expression level of 14-3-3ζ protein in miR-451a over-expressed group was lower than that in NC group under hypoxia (P<0.05).
CONCLUSION
Hypoxia can significantly increase the expression of GATA-1 protein, and the increase of GATA-1 expression can up-regulate the expression of miR-451a, thereby inhibiting the expression of 14-3-3ζ protein, which hinders the cell proliferation in erythroid differentiation model of K562 cells and plays an important role in promoting erythroid differentiation.
14-3-3 Proteins
;
Cell Differentiation
;
Erythroid Cells/metabolism*
;
GATA1 Transcription Factor/metabolism*
;
Humans
;
Hypoxia
;
K562 Cells
;
MicroRNAs/genetics*
6.14-3-3ζ protein mediates gemcitabine resistance in NK/T-cell lymphoma.
Chinese Journal of Hematology 2019;40(11):906-911
Objective: To explore the molecular mechanisms of 14-3-3ζ in gemcitabine resistance in extranodal NK/T-cell lymphoma, nasal type (ENKTL) . Methods: The effects of cell proliferation and invasion were detected by cell counting kit-8 (CCK-8) assay and transwell assay. YTS cells were exposed to gradually increased concentrations of gemcitabine to establish gemcitabine-resistant YTS cells (YTS-gem) in vitro. 14-3-3ζ specific siRNA lentiviral vector was transfected into YTS and YTS-gem cells to downregulate 14-3-3ζ expression, and stable transfected cell clones were screened. The protein expression was determined by Western blot. Results: ①14-3-3ζ expression was significantly up-regulated in gemcitabine resistant YTS-gem cells, comparing with that of YTS cells (P<0.05) . ②The results of CCK-8 and transwell assay showed that downregulation of 14-3-3ζ significantly reduced the cell proliferation and invasion abilities (P<0.05) . ③Downregulation of 14-3-3ζ could restore gemcitabine sensitivity in gemcitabine resistant YTS-gem cells (P<0.05) . ④Western blotting results showed that knockdown of 14-3-3ζ significantly upregulated pro-apoptotic Bax, and downregulated anti-apoptotic Bcl-2, Caspase-3, cleaved caspase-3, Cyclin D1 in gemcitabine-resistant YTS-gem cells (P<0.05) . There was no significant difference in p53 ang P-gp expression levels. Conclusions: 14-3-3ζ was upregulated in gemcitabine resistant YTS cells. Overexpression of 14-3-3ζ promoted cell proliferation and enhanced cell migration. 14-3-3ζ contributed to gemcitabine resistance to ENKTL through anti-apoptosis.
14-3-3 Proteins/metabolism*
;
Cell Line, Tumor
;
Deoxycytidine/therapeutic use*
;
Drug Resistance, Neoplasm
;
Humans
;
Lymphoma, Extranodal NK-T-Cell/drug therapy*
;
Gemcitabine
7.MicroRNA-375 Suppresses the Tumor Aggressive Phenotypes of Clear Cell Renal Cell Carcinomas through Regulating YWHAZ.
Xiang ZHANG ; Nai-Dong XING ; Cheng-Jun LAI ; Rui LIU ; Wei JIAO ; Jue WANG ; Jie SONG ; Zhong-Hua XU
Chinese Medical Journal 2018;131(16):1944-1950
Background:
MicroRNAs (miRNAs) are key regulators during tumor initiation and progression. MicroRNA-375 (MiR-375) has been proven to play a tumor-suppressive role in various types of human malignancies; however, its biological role in clear cell renal cell carcinoma (ccRCC) remains unclear. The purpose of this study was to explore the biologic role as well as the underlying mechanism of miR-375 in ccRCC progression.
Methods:
Quantitative polymerase chain reaction (qPCR) was applied to test the expression of miR-375 in tissues and cell lines by t-test. Functional experiments were used to investigate the biological role of miR-375 utilizing a gain-of-function strategy. The target of miR-375 was investigated by bioinformatic analysis and further verified by luciferase reporter assay, qPCR, Western blotting, and functional experiments in vitro.
Results:
Our study demonstrated that miR-375 was significantly downregulated in ccRCC tissues (cancer vs. normal, 0.804 ± 0.079 vs. 1.784 ± 0.200, t = 5.531 P < 0.0001) and cell lines, and loss of miR-375 expression significantly associated with advanced Fuhrman nuclear grades (Grade III and IV vs. Grade I and II, 1.000 ± 0.099 vs. 1.731 ± 0.189, t = 3.262 P = 0.003). Functional studies demonstrated that miR-375 suppressed ccRCC cell proliferation, migration, and invasion (all P < 0.05 in both 786-O and A498 cell lines). Multiple miRNA target prediction algorithms indicated the well-studied oncogene YWHAZ as a direct target of miR-375, which was further confirmed by the luciferase reporter assay, qPCR, and Western blotting. Moreover, restoration of YWHAZ could rescue the antiproliferation effect of miR-375.
Conclusions
The data provide the solid evidence that miR-375 plays a tumor-suppressive role in ccRCC progression, partially through regulating YWHAZ. This study expands the antitumor profile of miR-375, and supports its role as a potential therapeutic target in ccRCC treatment.
14-3-3 Proteins
;
metabolism
;
Carcinoma, Renal Cell
;
pathology
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Gene Expression Regulation
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Kidney Neoplasms
;
pathology
;
MicroRNAs
;
physiology
;
Phenotype
8.14-3-3ζ Overexpression is Associated with Poor Prognosis in Ovarian Cancer
Hyun Jung KIM ; Sun Hee SUNG ; Chan Young KIM ; Moon Kyoung BAE ; Min Sun CHO ; Yun Hwan KIM ; Seung Cheol KIM ; Woong JU
Yonsei Medical Journal 2018;59(1):51-56
PURPOSE: 14-3-3ζ regulates cell signaling, cell cycle progression, and apoptosis, and its overexpression is associated with disease recurrence and poor clinical outcomes in some solid tumors. However, its clinicopathological role in ovarian cancer is unknown. Our goal was to investigate whether 14-3-3ζ is associated with ovarian cancer prognosis. MATERIALS AND METHODS: We examined 14-3-3ζ expression by immunohistochemistry in ovarian cancer tissues obtained from 88 ovarian cancer patients. The examined tissues were of various histologies and stages. 14-3-3ζ expression was also analyzed by western blot in seven ovarian cancer cell lines and a primary ovary epithelial cell line. Cell viability was measured using an MTS-based assay following cisplatin treatment. RESULTS: Among the ovarian cancer samples, 53.4% (47/88) showed high 14-3-3ζ expression, and 14-3-3ζ overexpression was positively correlated with more advanced pathologic stages and grades. 14-3-3ζ overexpression was also significantly associated with poor disease-free survival (DFS) and overall survival (OS) of ovarian cancer patients. Median DFS and OS were 1088 and 3905 days, respectively, in the high 14-3-3ζ expression group, but not reached in the low 14-3-3ζ expression group (p=0.004 and p=0.033, log-rank test, respectively). Downregulating 14-3-3ζ by RNA interference in ovarian cancer cells led to enhanced sensitivity to cisplatin-induced cell death. CONCLUSION: 14-3-3ζ overexpression might be a potential prognostic biomarker for ovarian cancer, and the inhibition of 14-3-3ζ could be a therapeutic option that enhances the antitumor activity of cisplatin.
14-3-3 Proteins/metabolism
;
Adult
;
Aged
;
Cell Line, Tumor
;
Cisplatin/therapeutic use
;
Disease-Free Survival
;
Down-Regulation
;
Female
;
Gene Knockdown Techniques
;
Gene Silencing
;
Humans
;
Immunohistochemistry
;
Middle Aged
;
Ovarian Neoplasms/drug therapy
;
Ovarian Neoplasms/metabolism
;
Ovarian Neoplasms/pathology
;
Prognosis
;
Young Adult
9.YWHAZ Binds to TRIM21 but Is Not Involved in TRIM21-stimulated Osteosarcoma Cell Proliferation.
Qing Zhong ZENG ; Wan Ting LIU ; Jun Lei LU ; Xiao Hui LIU ; Yun Fang ZHANG ; Lang Xia LIU ; Xue Juan GAO
Biomedical and Environmental Sciences 2018;31(3):186-196
OBJECTIVEOsteosarcoma is the most common type of malignant bone tumor in children and adolescents. The role of E3 ligases in tumorigenesis is currently a focus in tumor research. In the present study, we investigated the role of the E3 ligase tripartite motif 21 (TRIM21) in osteosarcoma cell proliferation.
METHODS3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays were used to assess osteosarcoma cell viability. U2-OS cells stably carrying a recombinant lentivirus expressing tetracycline-regulated TRIM21 were screened. Co-immunoprecipitation was coupled with LCMS/MS analysis to identify novel interacting partners of TRIM21. Co-immunoprecipitation and bimolecular fluorescence complementation (BIFC) were performed to validate the interactions between TRIM21 and its novel partner YWHAZ. A TRIM21-ΔRING construct was generated to test the effects of TRIM21 ligase activity on YWHAZ.
RESULTSTRIM21 positively regulated osteosarcoma cell proliferation. Overexpression of TRIM21 enhanced osteosarcoma cell tolerance toward various stresses. YWHAZ protein was identified as a novel interacting partner of TRIM21 and its expression levels were negatively regulated by TRIM21. The RING domain of TRIM21 was required for TRIM21 negative regulation of YWHAZ expression. However, overexpression of YWHAZ did not affect positive regulation of osteosarcoma cell proliferation by TRIM21.
CONCLUSIONOur results further clarify the molecular mechanisms underlying the pathogenesis of osteosarcoma.
14-3-3 Proteins ; genetics ; metabolism ; Cell Proliferation ; genetics ; Humans ; Osteosarcoma ; genetics ; Ribonucleoproteins ; genetics ; metabolism ; Tumor Cells, Cultured
10.Knockdown of 14-3-3zeta enhances radiosensitivity and radio-induced apoptosis in CD133+ liver cancer stem cells.
Young Ki LEE ; Wonhee HUR ; Sung Won LEE ; Sung Woo HONG ; Sung Woo KIM ; Jung Eun CHOI ; Seung Kew YOON
Experimental & Molecular Medicine 2014;46(2):e77-
14-3-3zeta is related to many cancer survival cellular processes. In a previous study, we showed that silencing 14-3-3zeta decreases the resistance of hepatocellular carcinoma (HCC) to chemotherapy. In this study, we investigated whether silencing 14-3-3zeta affects the radioresistance of cancer stem-like cells (CSCs) in HCC. Knockdown of 14-3-3zeta decreased cell viability and the number of spheres by reducing radioresistance in CSCs after gamma-irradiation (IR). Furthermore, the levels of pro-apoptotic proteins were upregulated in CSCs via silencing 14-3-3zeta after IR. These results suggest that 14-3-3zeta knockdown enhances radio-induced apoptosis by reducing radioresistance in liver CSCs.
14-3-3 Proteins/genetics/*metabolism
;
Antigens, CD/genetics/*metabolism
;
Apoptosis Regulatory Proteins/genetics/metabolism
;
Carcinoma, Hepatocellular/genetics/metabolism
;
Cell Line, Tumor
;
*Gamma Rays
;
Glycoproteins/genetics/*metabolism
;
Humans
;
Liver Neoplasms/genetics/metabolism
;
Neoplastic Stem Cells/metabolism/*radiation effects
;
Peptides/genetics/*metabolism
;
*Radiation Tolerance

Result Analysis
Print
Save
E-mail