1.A review of structural modification and biological activities of oleanolic acid.
Huali YANG ; Minghui DENG ; Hongwei JIA ; Kaicheng ZHANG ; Yang LIU ; Maosheng CHENG ; Wei XIAO
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):15-30
Oleanolic acid (OA), a pentacyclic triterpenoid, exhibits a broad spectrum of biological activities, including antitumor, antiviral, antibacterial, anti-inflammatory, hepatoprotective, hypoglycemic, and hypolipidemic effects. Since its initial isolation and identification, numerous studies have reported on the structural modifications and pharmacological activities of OA and its derivatives. Despite this, there has been a dearth of comprehensive reviews in the past two decades, leading to challenges in subsequent research on OA. Based on the main biological activities of OA, this paper comprehensively summarized the modification strategies and structure-activity relationships (SARs) of OA and its derivatives to provide valuable reference for future investigations into OA.
Oleanolic Acid
;
Structure-Activity Relationship
;
Anti-Inflammatory Agents/pharmacology*
;
Triterpenes
;
Anti-Bacterial Agents/pharmacology*
2.How to write a family case report.
Djhoana G. Aguirre-Pedro ; Pura Jacobe T. Bascuñ ; a-Gaddi ; Ryan Jeanne V. Ceralvo
The Filipino Family Physician 2024;62(1):20-26
This manual details how to write a case report that uses the biopsychosocial approach in understanding and analyzing a patient’s disease in the context of the family in crisis. It begins by describing the illness characteristics of the index patient - the onset, course, prognosis, and family illness trajectory. The family structure and dynamics are then identified using various family assessment tools such as genogram, APGAR, SCREEM-RES, lifeline, family map, etc. Lastly, the physician formulates a family diagnosis: the presence of alliances and coalitions, the family’s strengths and coping mechanisms, how they adapt to the changes brought by the illness, etc. These data help the physician effectively engage the family as a source of support for the management of illness.
Family Structure
3.Carbon Chain Length Determines Inhibitory Potency of Perfluoroalkyl Sulfonic Acids on Human Placental 3β-Hydroxysteroid Dehydrogenase 1: Screening, Structure-Activity Relationship, and In Silico Analysis.
Lu Ming TANG ; Bai Ping MAO ; Bing Ru ZHANG ; Jing Jing LI ; Yun Bing TANG ; Hui Tao LI ; Ren Shan GE
Biomedical and Environmental Sciences 2023;36(11):1015-1027
OBJECTIVE:
This study aimed to compare 9 perfluoroalkyl sulfonic acids (PFSA) with carbon chain lengths (C4-C12) to inhibit human placental 3β-hydroxysteroid dehydrogenase 1 (3β-HSD1), aromatase, and rat 3β-HSD4 activities.
METHODS:
Human and rat placental 3β-HSDs activities were determined by converting pregnenolone to progesterone and progesterone secretion in JEG-3 cells was determined using HPLC/MS-MS, and human aromatase activity was determined by radioimmunoassay.
RESULTS:
PFSA inhibited human 3β-HSD1 structure-dependently in the order: perfluorooctanesulfonic acid (PFOS, half-maximum inhibitory concentration, IC 50: 9.03 ± 4.83 μmol/L) > perfluorodecanesulfonic acid (PFDS, 42.52 ± 8.99 μmol/L) > perfluoroheptanesulfonic acid (PFHpS, 112.6 ± 29.39 μmol/L) > perfluorobutanesulfonic acid (PFBS) = perfluoropentanesulfonic acid (PFPS) = perfluorohexanesulfonic acid (PFHxS) = perfluorododecanesulfonic acid (PFDoS) (ineffective at 100 μmol/L). 6:2FTS (1H, 1H, 2H, 2H-perfluorooctanesulfonic acid) and 8:2FTS (1H, 1H, 2H, 2H-perfluorodecanesulfonic acid) did not inhibit human 3β-HSD1. PFOS and PFHpS are mixed inhibitors, whereas PFDS is a competitive inhibitor. Moreover, 1-10 μmol/L PFOS and PFDS significantly reduced progesterone biosynthesis in JEG-3 cells. Docking analysis revealed that PFSA binds to the steroid-binding site of human 3β-HSD1 in a carbon chain length-dependent manner. All 100 μmol/L PFSA solutions did not affect rat 3β-HSD4 and human placental aromatase activity.
CONCLUSION
Carbon chain length determines inhibitory potency of PFSA on human placental 3β-HSD1 in a V-shaped transition at PFOS (C8), with inhibitory potency of PFOS > PFDS > PFHpS > PFBS = PFPS = PFHxS = PFDoS = 6:2FTS = 8:2FTS.
Humans
;
Pregnancy
;
Female
;
Rats
;
Animals
;
Placenta
;
Progesterone/pharmacology*
;
Aromatase/pharmacology*
;
Cell Line, Tumor
;
Fluorocarbons
;
Alkanesulfonic Acids
;
Structure-Activity Relationship
;
Hydroxysteroid Dehydrogenases/pharmacology*
4.Identification and expression analysis of apple PDHB-1 gene family.
Jinghua YANG ; Ju GAO ; Wenfang LI ; Ji LIU ; Jiaxing HUO ; Zhenshuo REN ; Long LI ; Baihong CHEN ; Juan MAO ; Zonghuan MA
Chinese Journal of Biotechnology 2023;39(12):4965-4981
Pyruvate dehydrogenase E1 component subunit beta-1 (PDHB-1) is a gene encoding the β-subunit of pyruvate dehydrogenase complex, which plays an important role in fruit acid accumulation. The aim of this study was to investigate the evolution characteristics of apple PDHB-1 family and its expression in apples with different acid contents. Bioinformatics analysis was performed using databases including NCBI, Pfam and software including ClustalX, MEGA, and TBtools. By combining titratable acid content determination and quantitative real-time PCR (qRT-PCR), the expression of this family genes in the peel and pulp of apple 'Asda' and 'Chengji No.1' with different acid content were obtained, respectively. The family members were mainly located in chloroplast, cytoplasm and mitochondria. α-helix and random coil were the main factors for the formation of secondary structure in this family. Tissue-specific expression profiles showed that the expression of most members were higher in fruit than in other tissues. qRT-PCR results showed that the expression profile of most members was consistent with the profile of titratable acid contents. In the peel, the expression levels of 14 members in 'Asda' apples with high acid content were significantly higher than that in 'Chengji No.1' apples with low acid content, where the expression difference of MdPDHB1-15 was the most significant. In the pulp, the expression levels of 17 members in 'Asda' apples were significantly higher than that in 'Chengji No.1' apples, where MdPDHB1-01 was the most highly expressed. It was predicted that PDHB-1 gene family in apple plays an important role in the regulation of fruit acidity.
Malus/metabolism*
;
Fruit/genetics*
;
Protein Structure, Secondary
5.A new cinnamic acid ester derivative from Liquidambaris Resina.
Shao-Ying XU ; Qin-Wen XIAO ; Su-Min ZHAO ; Yi-Jian GUAN ; Liao-Heng YUAN ; Yao ZHU ; Chao-Jie WANG ; Peng-Cheng YAN ; Jian-Yong DONG
China Journal of Chinese Materia Medica 2023;48(15):4130-4136
Twelve compounds were isolated from Liquidambaris Resina by silica gel column chromatography and thin layer chromatography. Their structures were identified on the basis of spectral data, electron capture detector data, and physicochemical properties as(2'R, 3'R)-2',3'-dihydroxy-hydrocinnamyl-(E)-cinnamate(1),(E)-cinnamyl-(E)-cinnamate(2), cinnamic acid(3), 28-norlup-20(29)-en-3-one-17β-hydroperoxide(4), erythrodiol(5), 13β,28-epoxy-30-hydroxyolean-1-en-3-one(6),(3β)-olean-12-ene-3,23-diol(7), 2α,3α-dihydroxy-olean-12-en-28-oic acid(8), 28-hydroxyolean-12-en-3-one(9), 3-epi-oleanolic acid(10), 3-oxo-oleanolic acid(11), and hederagenin(12). Compound 1 was a new cinnamic acid ester derivative and compounds 2-4,6-8, and 12 were isolated from Liquidambaris Resina for the first time. Compounds 4, 5, 10, and 12 exerted inhibitory effects on the proliferation of human umbilical vein endothelial cells(HUVEC) with the IC_(50) values of(17.43±2.17),(35.32±0.61),(27.50±0.80), and(46.30±0.30) μmol·L~(-1), respectively.
Humans
;
Oleanolic Acid
;
Endothelial Cells
;
Esters
;
Cinnamates
;
Triterpenes/chemistry*
;
Molecular Structure
6.New steroidal saponins from aerial parts of Paris polyphylla var. chinensis.
Zi-Lu ZHENG ; Xiao-Min TAN ; Liang-Jun GUAN ; Ru WANG ; Liang-Mian CHEN ; Zhi-Min WANG ; Hui-Min GAO
China Journal of Chinese Materia Medica 2023;48(17):4589-4597
The shortage of Paridis Rhizoma promotes comprehensive utilization and development research of waste aerial parts of the original plant. The chemical compositions of the aerial parts of Paris polyphylla var. chinensis were clarified based on the ultrahigh performance liquid chromatography tandem quadrupoles time of flight mass spectrometry(UPLC-QTOF-MS/MS) in the previous investigation, and a series of flavonoids and steroidal saponins were isolated. The present study continued the isolation and structure identification of the new potential compounds discovered based on UPLC-QTOF-MS/MS. By using silica gel, ODS, flash rapid preparation, and other column chromatography techniques, combined with prepared high performance liquid chromatography, five compounds were isolated from the 75% ethanol extract of the aerial parts of P. polyphylla var. chinensis, and their structures were identified by spectral data combined with chemical transformations, respectively, as(23S,25R)-23,27-dihydroxy-diosgenin-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-glucopyranoside(1),(25R)-26-O-β-D-glucopyranosyl-furost-5-en-3β,22α,26-triol-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside(2),(25R)-27-O-β-D-glucopyranosyl-5-en-3β,27-dihydroxyspirost-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside(3),(25R)-27-O-β-D-glucopyranosyl-5-en-3β,27-dihydroxyspirost-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-glucopyranoside(4), and aculeatiside A(5). Among them, compounds 1-4 were new ones, and compound 5 was isolated from P. polyphylla var. chinensis for the first time.
Tandem Mass Spectrometry
;
Saponins/analysis*
;
Liliaceae/chemistry*
;
Chromatography, High Pressure Liquid
;
Rhizome/chemistry*
;
Melanthiaceae
;
Molecular Structure
7.Research progress in tigliane-type macrocyclic diterpenoids.
Hong-Hu TAN ; Meng XIA ; Ping SU ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2023;48(17):4620-4633
Tigliane type macrocyclic diterpenoids with special structures and diverse bioactivities are mainly extracted from plants of Euphorbiaceae and Thymelaeaceae. According to the different functional groups, they can be classified into types of phorbol esters, C-4 deoxyphorbol esters, C-12 deoxyphorbol esters, C-16 or C-17 substituted phorbol esters and others. Most of them present promising antiviral activities and cytotoxic activities and are expected to be developed as candidates for anti-AIDS, anti-tuberculosis, and anti-tumor clinical trials, demonstrating great potential for the application in healthcare. This paper reviews 115 novel tigliane-type diterpenoids discovered since 2013 and summarize their chemical structures and bioactivities, aiming to lay a foundation for further development and utilization of these compounds and provide new ideas for the development of clinical drugs.
Phorbols
;
Molecular Structure
;
Diterpenes/chemistry*
;
Antiviral Agents
;
Phorbol Esters
8.Research progress on structure, structure-activity relationship, and biological activity of Aconiti Lateralis Radix Praeparata polysaccharides.
Jun TANG ; Xin YANG ; Xin YANG ; Qi HU ; Ji-Hai GAO ; Ming YANG ; Ya-Nan HE ; Ding-Kun ZHANG
China Journal of Chinese Materia Medica 2023;48(20):5410-5418
Aconiti Lateralis Radix Praeparata polysaccharides(AP) are a class of bioactive macromolecules extracted from the herbs of Aconiti Lateralis Radix Praeparata and its various processed products. Since the AP was first separated in 1986, its pharmacological effects include immune regulation, anti-tumor, anti-depression, organ protection, hypoglycemia, and anti-inflammatory had been found. In recent years, with the development of polysaccharide extraction, separation, and structure identification technologies, more than 20 kinds of AP have been separated from Aconiti Lateralis Radix Praeparata and its processed products, and they have ob-vious differences in relative molecular weight, monosaccharide composition, glycosidic bond, structural characteristics, and biological activities. In particular, AP may be dissolved, degraded, or allosteric under the complex processing environment of fermentation, soaking, cooking, etc., leading to the diversified structure of AP, which provides a possibility for further understanding of the structure-activity relationship of AP. Therefore, this study systematically reviewed the research progress on the structure and structure-activity relationship of AP, summarized the biological activity and potential action mechanism of AP, and discussed the technical challenges in the development and application of AP, so as to promote the quality control and further development and utilization of AP.
Drugs, Chinese Herbal/chemistry*
;
Aconitum/chemistry*
;
Polysaccharides/pharmacology*
;
Structure-Activity Relationship
;
Technology
9.Research progress on natural guaiane-type sesquiterpenoids and their biological activities.
Jie GUO ; Jia-Ping WANG ; Bo PENG ; Xiao-Qian LIU ; Chen-Xi YANG ; Li-Hua YAN ; Zhi-Min WANG
China Journal of Chinese Materia Medica 2023;48(21):5727-5749
Guaiane-type sesquiterpenoids are a class of terpenoids with [5,7] ring-fused system as the basic skeletal structure composed of three isoprene units, which are substituted by 4,10-dimethyl-7-isopropyl. According to the difference in functional groups and degree of polymerization, they can be divided into simple guaiane-type sesquiterpenoids, sesquiterpene lactones, sesquiterpene dimers, and sesquiterpene trimers. Natural guaiane-type sesquiterpenoids are widely distributed in plants, fungi, and marine organisms, especially in families such as Compositae, Zingiberaceae, Thymelaeaceae, Lamiaceae, and Alismataceae. Guaiane-type sesquiterpenoids have good antibacterial, anti-inflammatory, anticancer, and neuroprotective effects. In this paper, the novel guaiane-type sesquiterpenoids isolated and identified in recent 10 years(2013-2022) and their biological activities were reviewed in order to provide refe-rences for the research and development of guaiane-type sesquiterpenoids.
Humans
;
Molecular Structure
;
Sesquiterpenes, Guaiane
;
Asteraceae/chemistry*
;
Sesquiterpenes
10.A new xanthone from hulls of Garcinia mangostana and its cytotoxic activity.
Feng-Ning ZHAO ; Qi NIU ; Die XIAO ; Hao-Nan XU ; Hao-Xin WANG ; Rong-Lu BI ; Hong-Ping HE ; Zhi-Yong JIANG
China Journal of Chinese Materia Medica 2023;48(21):5817-5821
Eight compounds were isolated from ethyl acetate fraction of 80% ethanol extract of the hulls of Garcinia mangostana by silica gel, Sephadex LH-20 column chromatography, as well as prep-HPLC methods. By HR-ESI-MS, MS, 1D and 2D NMR spectral analyses, the structures of the eight compounds were identified as 16-en mangostenone E(1), α-mangostin(2), 1,7-dihydroxy-2-(3-methy-lbut-2-enyl)-3-methoxyxanthone(3), cratoxyxanthone(4), 2,6-dimethoxy-para-benzoquinone(5), methyl orselinate(6), ficusol(7), and 4-(4-carboxy-2-methoxyphenoxy)-3,5-dimethoxybenzoic acid(8). Compound 1 was a new xanthone, and compound 4 was a xanthone dimer, compound 5 was a naphthoquinone. All compounds were isolated from this plant for the first time except compounds 2 and 3. Cytotoxic bioassay suggested that compounds 1, 2 and 4 possessed moderate cytotoxicity, suppressing HeLa cell line with IC_(50) va-lues of 24.3, 35.5 and 17.1 μmol·L~(-1), respectively. Compound 4 also could suppress K562 cells with an IC_(50) value of 39.8 μmol·L~(-1).
Humans
;
Garcinia mangostana/chemistry*
;
HeLa Cells
;
Antineoplastic Agents
;
Magnetic Resonance Spectroscopy
;
Xanthones/pharmacology*
;
Garcinia/chemistry*
;
Plant Extracts/chemistry*
;
Molecular Structure


Result Analysis
Print
Save
E-mail