1.Action mechanisms and application pathways of biomaterials in promoting corneal alkali burn repair
Hui XIAO ; Dongyan LI ; Jing JI ; Lizhen WANG
Chinese Journal of Tissue Engineering Research 2025;29(10):2162-2170
BACKGROUND:Traditional treatments for corneal alkali burns are limited,especially in controlling inflammation,preventing neovascularization,and inhibiting corneal scarring.Natural,synthetic,or composite materials provide a wide range of treatment options.However,the mechanism by which biomaterials promote corneal alkali burn repair has not yet been systematically understood. OBJECTIVE:To summarize the current research on biomaterials in promoting corneal alkali burn repair in and outside China,and review the mechanism and application of biomaterials in repairing corneal alkali burn. METHODS:The first author searched"cornea,alkali burn,amniotic membrane,hyaluronic acid,collagen,chitosan,polymer materials"as Chinese keywords and"amniotic membrane,hyaluronic acid,collagen,chitosan,polymer,cornea,alkali burn"as English keywords in PubMed,Web of Science,CNKI,and WanFang databases.According to inclusion and exclusion criteria,76 eligible articles were finally included for review. RESULTS AND CONCLUSION:(1)In the field of corneal alkali burn repair,biomaterials such as amniotic membrane,hyaluronic acid,collagen,chitosan,and degradable polymer materials have been widely studied and applied.Each of these biomaterials has its own characteristics,advantages,and disadvantages,and stands out in different aspects.(2)First and foremost,amniotic membranes are considered one of the most promising biomaterials due to their abundance of bioactive factors.They are biocompatible and can regulate the corneal inflammatory response.However,there are issues with donor shortages and susceptibility to infectious diseases.(3)Hyaluronic acid has good moisturizing properties and biocompatibility,and is able to improve the survival rate of corneal cells and increase corneal transparency.(4)The good biocompatibility and scaffold structure of collagen enable the promotion of corneal cell adhesion and proliferation,as well as the reconstruction of corneal tissue structure.(5)Chitosan is recognized for its good biocompatibility and degradability,making it suitable as a carrier for drug delivery and cell transplantation.(6)Degradable polymer materials have good controllability over degradation and can provide a good support and delivery platform for the repair of corneal alkali burns,but further research is needed on their stability and biocompatibility.(7)Overall,there is currently no single biomaterial that can completely address the repair problem of corneal alkali burns,and each biomaterial has its own specific application scenarios and limitations.(8)Future research directions should focus on further improving the properties and structure of biomaterials,exploring more effective combination applications,and deeply understanding the interaction mechanism between biomaterials and corneal tissue,in order to enhance the therapeutic effect of corneal alkali burns and the quality of life of patients.
2.Mogroside Ⅴ promotes osteogenic differentiation of bone marrow mesenchymal stem cells by modulating M1 polarization of macrophages under high glucose condition
Zhimao YE ; Jiuying HUI ; Xiaoxia ZHONG ; Yuying MAI ; Hao LI
Chinese Journal of Tissue Engineering Research 2025;29(19):3968-3975
BACKGROUND:The diabetic microenvironment can cause excessive M1 polarization of macrophages,and this hyperglycemic inflammatory state can inhibit osteogenic differentiation of bone marrow mesenchymal stem cells,thus affecting the healing of diabetic bone defects.Studies have indicated that mogroside V possesses anti-inflammatory,antioxidant,and hypoglycemic properties.However,its potential to modulate M1 polarization of macrophages and osteogenic differentiation of bone marrow mesenchymal stem cells under high glucose and inflammatory condition remains unclear. OBJECTIVE:To explore the effect of mogroside V on regulating M1 macrophage polarization and its effect on osteogenic differentiation of bone marrow mesenchymal stem cells under high glucose and inflammatory condition. METHODS:Murine diabetic models were established using C57BL/6 mice.Bone marrow-derived macrophages were isolated from tibia and fibula of normal and diabetic mice,and cultured in low-glucose and high-glucose media.Then M1 polarization of bone marrow-derived macrophages was induced using lipopolysaccharide and interferon-γ.Bone marrow-derived macrophages were treated with 160,320,and 640 μmol/L mogroside V.Flow cytometry was employed to determine the proportion of F4/80+CD86+cells.qRT-PCR was utilized to assess mRNA expression levels of inducible nitric oxide synthase,interleukin 1β,and interleukin 6.ELISA was employed to evaluate tumor necrosis factor-α secretion in bone marrow-derived macrophage supernatants.Bone marrow mesenchymal stem cells were isolated from tibia and fibula of C57BL/6 suckling mice,and induced osteogenic differentiation using low-or high-glucose osteogenic induction medium.Bone marrow mesenchymal stem cells were treated with M1 macrophage-conditioned mediums with or without 320 μmol/L mogroside V in osteogenic differentiation process.qRT-PCR was employed to assess the mRNA expression of alkaline phosphatase,Runt-related factor 2,osteocalcin,and osteopontin on day 14 after osteogenic induction.Alizarin red staining and quantitative analysis were conducted to evaluate calcium deposition on day 21 after osteogenic induction. RESULTS AND CONCLUSION:(1)Flow cytometry results showed that with the treatment of 320 and 640 μmol/L mogroside V,the proportion of F4/80+CD86+bone marrow-derived macrophages was significantly lower than that in the high-glucose control group(P<0.05).(2)qRT-PCR results showed that with the treatment of 160,320,and 640 μmol/L mogroside V,the mRNA expression levels of inducible nitric oxide synthase and interleukin 6 were significantly lower than that in the high-glucose control group(P<0.05).With the treatment of 320 and 640 μmol/L mogroside V,the mRNA expression level of interleukin 1β was significantly lower than that in the high-glucose control group(P<0.05).(3)ELISA results exhibited that with the treatment of 160,320,and 640 μmol/L mogroside V,the tumor necrosis factor-α secretion level was significantly lower than that in the high-glucose control group(P<0.05).(4)With the treatment of 320 μmol/L mogroside V,calcium salt deposition was increased in bone marrow mesenchymal stem cells under high glucose and inflammatory conditions(P<0.05),and the mRNA relative expression levels of alkaline phosphatase,Runt-related factor 2,and osteopontin were increased(P<0.05).These findings indicate that mogroside V can promote osteogenic differentiation of bone marrow mesenchymal stem cells by inhibiting the M1 polarization of bone marrow-derived macrophages under high glucose and inflammatory conditions and reducing the generation of inflammatory factors.
3.Comparison of bilateral implantation of extended depth-of-focus intraocular lens and mix-and-match implantation of extended depth-of-focus intraocular lens with a diffractive bifocal intraocular lens
Tong LI ; Zhuoya LI ; Rong GUO ; Xiaomin HU ; Hui ZHANG
International Eye Science 2025;25(3):337-343
AIM: To compare the clinical outcomes of extended depth-of-focus intraocular lenses(EDOF IOLs)using either micromonovision implantation or mixed implantation of EDOF and diffractive bifocal IOLs.METHODS: This retrospective clinical trial included 130 patients(260 eyes), who were divided into two groups. Group RR comprised 70 patients(140 eyes)bilaterally implanted with ZXR00 IOLs(Tecnis ZXR00, where one target was -0.5 D to -0.75 D and the other was 0 to -0.25 D). Group RM comprised 60 patients(120 eyes)unilaterally implanted with both ZXR00 and ZMB00 IOLs(Tecnis ZMB00, 0 to -0.25 D). Postoperative outcomes were compared after 3 mo, including visual acuity, defocus curves, stereoacuity, modulation transfer functions(MTFs), higher-order aberrations, and Visual Function-14(VF-14)questionnaire responses.RESULTS: Group RR had superior bilateral intermediate vision, while the group RM had superior bilateral near vision(both P<0.05). Group RM also exhibited superior MTFs and reduced higher-order aberrations(both P<0.05). Stereoacuity and VF-14 questionnaire results showed no statistically significant difference between groups(P>0.05).CONCLUSION: The implantation of micromonovision has significantly improved near vision. IOLs and their collocation can be customized according to individual patient needs to achieve precise treatment and provide cataract patients with high-quality vision.
4.Comparison of bilateral implantation of extended depth-of-focus intraocular lens and mix-and-match implantation of extended depth-of-focus intraocular lens with a diffractive bifocal intraocular lens
Tong LI ; Zhuoya LI ; Rong GUO ; Xiaomin HU ; Hui ZHANG
International Eye Science 2025;25(3):337-343
AIM: To compare the clinical outcomes of extended depth-of-focus intraocular lenses(EDOF IOLs)using either micromonovision implantation or mixed implantation of EDOF and diffractive bifocal IOLs.METHODS: This retrospective clinical trial included 130 patients(260 eyes), who were divided into two groups. Group RR comprised 70 patients(140 eyes)bilaterally implanted with ZXR00 IOLs(Tecnis ZXR00, where one target was -0.5 D to -0.75 D and the other was 0 to -0.25 D). Group RM comprised 60 patients(120 eyes)unilaterally implanted with both ZXR00 and ZMB00 IOLs(Tecnis ZMB00, 0 to -0.25 D). Postoperative outcomes were compared after 3 mo, including visual acuity, defocus curves, stereoacuity, modulation transfer functions(MTFs), higher-order aberrations, and Visual Function-14(VF-14)questionnaire responses.RESULTS: Group RR had superior bilateral intermediate vision, while the group RM had superior bilateral near vision(both P<0.05). Group RM also exhibited superior MTFs and reduced higher-order aberrations(both P<0.05). Stereoacuity and VF-14 questionnaire results showed no statistically significant difference between groups(P>0.05).CONCLUSION: The implantation of micromonovision has significantly improved near vision. IOLs and their collocation can be customized according to individual patient needs to achieve precise treatment and provide cataract patients with high-quality vision.
5.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
6.Effects and mechanism of paeoniflorin on oxidative stress of ulcerative colitis mice
Xin DAI ; Ying WANG ; Xinyue REN ; Dingxing FAN ; Xianzhe LI ; Jiaxuan FENG ; Shilei LOU ; Hui YAN ; Cong SUN
China Pharmacy 2025;36(4):427-433
OBJECTIVE To investigate the effects and potential mechanism of paeoniflorin on oxidative stress of ulcerative colitis (UC) mice based on adenosine monophosphate-activated protein kinase (AMPK)/nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway. METHODS Male BALB/c mice were randomly divided into control group, model group, inhibitor group (AMPK inhibitor Compound C 20 mg/kg), paeoniflorin low-, medium- and high-dose groups (paeoniflorin 12.5, 25, 50 mg/kg), high- dose of paeoniflorin+inhibitor group (paeoniflorin 50 mg/kg+Compound C 20 mg/kg), with 8 mice in each group. Except for the control group, mice in all other groups were given 4% dextran sulfate sodium solution for 5 days to establish the UC model. Subsequently, mice in each drug group were given the corresponding drug solution intragastrically or intraperitoneally, once a day, for 7 consecutive days. The changes in body weight of mice were recorded during the experiment. Twenty-four hours after the last administration, colon length, malondialdehyde (MDA) content, and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in colon tissues were measured; histopathological morphology of colon tissues, tight junctions between intestinal epithelial cells, and histopathological scoring were all observed and evaluated; the mRNA expressions of AMPK and Nrf2, as well as the protein expressions of heme oxygenase-1(HO-1), occludin and claudin-1, were all determined in colon tissue. RESULTS Compared with model group, paeoniflorin groups exhibited recovery from pathological changes such as inflammatory cell infiltration and crypt damage in the colon tissue, as well as improved tight junction damage between intestinal epithelial cells. Additionally, significant increases or upregulations were observed in body weight, colon length, activities of SOD and GSH-Px, phosphorylation level of AMPK, and protein expression of Nrf2, HO-1, occludin, claudin-1, and mRNA expressions of AMPK and Nrf2; concurrently, MDA content and histopathological scores were significantly reduced (P< 0.05 or P<0.01). In contrast, the inhibitor group showed comparable (P>0.05) or worse (P<0.05 or P<0.01) indicators compared to the model group. Conversely, the addition of AMPK inhibitor could significantly reverse the improvement of high- dose paconiflorin (P<0.01). CONCLUSIONS Paeoniflorin can repair intestinal epithelial cell damage in mice, improve tight junctions between epithelial cells, upregulate the expression of related proteins, and promote the expression and secretion of antioxidant-promoting molecules, thereby ameliorating UC; its mechanism may be associated with activating AMPK/Nrf2 antioxidant pathway.
7.Protective Effect of Shengxiantang on Myocardial Microvascular Injury in Rats with Chronic Heart Failure
Hui GAO ; Zeqi YANG ; Fan GAO ; Hongjing LI ; Aiyangzi LU ; Xingchao LIU ; Qiuhong GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):35-42
ObjectiveTo explore the protective effect of Shengxiantang on cardiac function and myocardial microvascular injury in rats with chronic heart failure (CHF). MethodsThe CHF rat model was prepared by aortic arch constriction (TAC). Of the 72 SD rats, 8 were randomly selected as the sham operation group, where the chest was opened without ligating the aortic arch. The 40 successfully modeled rats were randomly divided into the model group, the Shengxiantang low-, medium-, and high-dose groups (5.1, 10.2, 20.4 g·kg-1), and the trimetazidine group (6.3 mg·kg-1), with 8 rats in each group. Drug administration began 4 weeks after modeling. The administration groups received the corresponding drugs by gavage, while the sham operation and model groups were given the same amount of distilled water for 8 consecutive weeks. Echocardiography was used to assess cardiac function. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of nitric oxide (NO), endothelin (ET-1), vascular endothelial growth factor (VEGF), and von Willebrand factor (vWF). Ultrastructural changes of microvessels were observed by transmission electron microscopy. Immunohistochemistry was used to detect the expression levels of ATP synthase subunit (ATP5D) and F-actin in myocardial tissue. Western blot was used to detect the expression levels of occludin, claudin, vascular endothelial cadherin (VE-Cadherin), and zonula occludens-1 (ZO-1). Microvessel density was measured by immunofluorescence staining. ResultsCompared with the sham operation group, the ejection fraction (EF) and left ventricular shortening fraction (FS) in the model group were significantly decreased (P<0.01), while the left ventricular diastolic diameter (LVIDd), left ventricular systolic diameter (LVIDs), left ventricular end-diastolic posterior wall thickness (LVPWd), left ventricular end-systolic posterior wall thickness (LVPWs), left ventricular end-diastolic volume (LVVOLd), and left ventricular end-systolic volume (LVVOLs) were significantly increased (P<0.01). The levels of NO and VEGF were significantly decreased (P<0.01), while the levels of ET-1 and vWF were significantly increased (P<0.01). Under electron microscopy, the microvascular basement membrane was incomplete and the tight junctions were blurred. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin were significantly decreased (P<0.05, P<0.01), and the relative density of microvessels was significantly reduced (P<0.05, P<0.01). After intervention with Shengxiantang, the EF and FS of CHF rats significantly increased (P<0.01), while the LVIDd, LVIDs, LVPWd, LVPWs, LVVOLd, and LVVOLs significantly decreased (P<0.01). The levels of NO and VEGF significantly increased (P<0.01), while the levels of ET-1 and vWF significantly decreased (P<0.01). Under electron microscopy, the microvascular basement membrane was relatively complete and the tight junctions were more continuous. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin significantly increased (P<0.05, P<0.01), and the relative density of microvessels significantly increased (P<0.01). ConclusionShengxiantang can effectively improve the cardiac function of CHF rats, reduce microvascular endothelial injury, strengthen the connection between endothelial cells, and increase microvessel density, thereby protecting myocardial microvascular injury.
8.Protective Effect of Shengxiantang on Myocardial Microvascular Injury in Rats with Chronic Heart Failure
Hui GAO ; Zeqi YANG ; Fan GAO ; Hongjing LI ; Aiyangzi LU ; Xingchao LIU ; Qiuhong GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):35-42
ObjectiveTo explore the protective effect of Shengxiantang on cardiac function and myocardial microvascular injury in rats with chronic heart failure (CHF). MethodsThe CHF rat model was prepared by aortic arch constriction (TAC). Of the 72 SD rats, 8 were randomly selected as the sham operation group, where the chest was opened without ligating the aortic arch. The 40 successfully modeled rats were randomly divided into the model group, the Shengxiantang low-, medium-, and high-dose groups (5.1, 10.2, 20.4 g·kg-1), and the trimetazidine group (6.3 mg·kg-1), with 8 rats in each group. Drug administration began 4 weeks after modeling. The administration groups received the corresponding drugs by gavage, while the sham operation and model groups were given the same amount of distilled water for 8 consecutive weeks. Echocardiography was used to assess cardiac function. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of nitric oxide (NO), endothelin (ET-1), vascular endothelial growth factor (VEGF), and von Willebrand factor (vWF). Ultrastructural changes of microvessels were observed by transmission electron microscopy. Immunohistochemistry was used to detect the expression levels of ATP synthase subunit (ATP5D) and F-actin in myocardial tissue. Western blot was used to detect the expression levels of occludin, claudin, vascular endothelial cadherin (VE-Cadherin), and zonula occludens-1 (ZO-1). Microvessel density was measured by immunofluorescence staining. ResultsCompared with the sham operation group, the ejection fraction (EF) and left ventricular shortening fraction (FS) in the model group were significantly decreased (P<0.01), while the left ventricular diastolic diameter (LVIDd), left ventricular systolic diameter (LVIDs), left ventricular end-diastolic posterior wall thickness (LVPWd), left ventricular end-systolic posterior wall thickness (LVPWs), left ventricular end-diastolic volume (LVVOLd), and left ventricular end-systolic volume (LVVOLs) were significantly increased (P<0.01). The levels of NO and VEGF were significantly decreased (P<0.01), while the levels of ET-1 and vWF were significantly increased (P<0.01). Under electron microscopy, the microvascular basement membrane was incomplete and the tight junctions were blurred. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin were significantly decreased (P<0.05, P<0.01), and the relative density of microvessels was significantly reduced (P<0.05, P<0.01). After intervention with Shengxiantang, the EF and FS of CHF rats significantly increased (P<0.01), while the LVIDd, LVIDs, LVPWd, LVPWs, LVVOLd, and LVVOLs significantly decreased (P<0.01). The levels of NO and VEGF significantly increased (P<0.01), while the levels of ET-1 and vWF significantly decreased (P<0.01). Under electron microscopy, the microvascular basement membrane was relatively complete and the tight junctions were more continuous. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin significantly increased (P<0.05, P<0.01), and the relative density of microvessels significantly increased (P<0.01). ConclusionShengxiantang can effectively improve the cardiac function of CHF rats, reduce microvascular endothelial injury, strengthen the connection between endothelial cells, and increase microvessel density, thereby protecting myocardial microvascular injury.
9.Advances in research on fine motion control of prosthesis fingers with brain-computer interface
Di GAN ; Hui HUANG ; Chengzhi LI ; Shiyu ZHANG ; Shiyuan WANG ; Tao WANG
Chinese Journal of Clinical Medicine 2025;32(1):114-119
The deficiency of fingers due to various reasons leads to a certain degree of loss of full or part hand functions. Physical and mental health of patients are seriously affected, and patients have varying degrees of reduced quality of life. Prosthesis fingers play an important role in completing the body shape and enhancing patients’ self-confidence and self-esteem. However, how to make prosthesis fingers perform coordinated movements and restore complete functions is a crucial problem that urgently needs to be solved. This paper reviews the methods of brain-computer interface controlled fine finger movements and elaborates on the origin, current situation, and advancements of the development of this technology, laying a foundation for subsequent research, with the expectation of helping patients solve the problems arising from the insufficiency or absence of finger functions.
10.Protective effect of Shenfu injection against neonatal hypoxic-ischemic brain injury by inhibiting the ferroptosis
Xiaotong Zhang ; Meng Zhang ; Gang Li ; Yang Hu ; Yajing Xun ; Hui Ding ; Donglin Shen ; Ming Wu
Acta Universitatis Medicinalis Anhui 2025;60(1):31-40
Objective :
To observe the brain tissue injury during hypoxia-ischemia, as well as the pathological changes and the expression of ferroptosis-related factors after the use of Shenfu injection(SFI), and to explore the protective effect of SFI on hypoxic-ischemic brain injury(HIBD) by inhibiting ferroptosis.
Methods :
An animal model of HIBD in SD rats was constructed and intervened with SFI. Pathologic changes in brain tissue were observed by HE staining methods. Nissen staining was used to observe neuron survival. Glutathione Peroxidase 4(GPX4) and Divalent Metal Transporter 1(DMT1) expression were detected in brain tissue by Western blot, immunohistochemistry and immunofluorescence. Reduced Glutathione(GSH), Lactate Dehydrogenase(LDH), Malondialdehyde(MDA), Superoxide Dismutase(SOD) and tissue iron content were determined with the kits. BV-2 microglial cell line(BV2) cells were culturedin vitroand divided into control group(Ctrl group), oxygen-glucose deprivation group(OGD group), iron ferroptosis-inducing group(Erastin group), iron ferroptosis-inhibiting group(Fer-1 group), Shenfu injection group(SFI group), and Erastin+Shenfu injection group(Erastin+SFI group). 2′,7′-Dichlorodihydrofluorescein diacetate(DCFH-DA) reactive oxygen species(ROS) fluorescent probe was used to detect the ROS release level; Immunofluorescence was used to observe intracellular GPX4, DMT1 expression.
Results :
Compared with the Sham group, rats in the HIBD group showed significant neuronal cell damage in brain tissue, decreased GPX4 expression(P<0.01), increased DMT1 expression(P<0.01), decreased GSH and SOD levels(P<0.01), and increased LDH, MDA and tissue iron levels(P<0.05,P<0.05,P<0.01). In contrast, after the intervention of SFI, GPX4 expression was elevated(P<0.01), DMT1 expression decreased(P<0.01), GSH and SOD levels were elevated(P<0.01), and LDH, MDA, and tissue iron levels decreased(P<0.05,P<0.05,P<0.01). The cells experiments showed that compared with the Ctrl group, the OGD group had a significantly higher ROS content and a decrease in the expression of GPX4 fluorescence intensity, and an increase in the fluorescence intensity of DMT1(P<0.01), compared with the OGD group, the ROS content was reduced in the SFI group, while the expression of GPX4 was elevated and the expression of DMT1 was reduced(P<0.01).
Conclusion
Hippocampal and cortical regions are severely damaged after HIBD in neonatal rats, and their brain tissues show decreased expression of GPX4 and increased expression of DMT1. The above suggests that ferroptosis is involved in HIBD brain injury in neonatal rats. In contrast, Shenfu injection has a protective effect on HIBD experimental animal model and BV2 cell injury model by reducing iron aggregation and ROS production.


Result Analysis
Print
Save
E-mail