1.Mechanism of Ferroptosis in Regulating Chronic Heart Failure and Traditional Chinese Medicine Prevention and Treatment Based on Qi Deficiency and Stagnation: A Review
Ziyang YUAN ; Yan ZHANG ; Wei ZHANG ; Yaqin WANG ; Wenjun MAO ; Guo YANG ; Xuewei WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):248-255
Chronic heart failure (CHF) is the final stage of cardiovascular diseases. It is a complex syndrome, with dyspnea and edema as the main clinical manifestations, and it is characterized by complex disease conditions, difficult cure, and high mortality. Ferroptosis, a new type of programmed cell death, is different from other types of programmed cell death. Ferroptosis is iron-dependent, accompanied by lipid peroxide accumulation and mitochondrial shrinkage, becoming a hot research topic. Studies have confirmed that ferroptosis plays a key role in the occurrence and development of CHF. The regulation of ferroptosis may become a potential target for the treatment of CHF in the future. The theory of Qi deficiency and stagnation refers to the pathological state of original Qi deficiency and abnormal transportation and distribution of Qi, blood, and body fluid, which has guiding significance for revealing the pathogenesis evolution of some chronic diseases. We believe that Qi deficiency and stagnation is a summary of the pathogenesis of ferroptosis in CHF. Deficiency of Qi (heart Qi) is the root cause of CHF, and stagnation (phlegm turbidity and blood stasis) is the branch of this disease. The two influence each other in a vicious circle to promote the development of this disease. Traditional Chinese medicine (TCM) plays an important role in the treatment of CHF, improving the prognosis and quality of life of CHF patients. This paper explores the correlation between the theory of Qi deficiency and stagnation and the mechanism of ferroptosis in CHF. Furthermore, this paper reviews the mechanism of Chinese medicines and compound prescriptions in preventing and treating CHF by regulating ferroptosis according to the principles of replenishing Qi and dredging to remove stagnation, aiming to provide new ideas and methods for the treatment of CHF with TCM.
2.Pharmacological Effects and Mechanisms of Salviae Miltiorrhizae Radix et Rhizoma and Its Active Components in Treating Depression: A Review
Ziyang HUANG ; Zhiyi WANG ; Zibo LI ; Erping XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):288-296
Depression is a common mental disorder in clinical practice, and it falls under the category of depression syndrome in traditional Chinese medicine (TCM). In TCM, Qi depression is considered as the root cause of all depression syndromes. Qi depression can lead to blood stasis, which is a key cause of diseases due to depression syndrome. Therefore, treating stasis is an important therapeutic approach for depression syndrome. Salviae Miltiorrhizae Radix et Rhizoma, a representative herbal medicine for activating blood and removing stasis, is effective in activating blood, removing stasis, dredging meridians, and alleviating pain. Currently, it is primarily used in clinical practice to treat cardiovascular and cerebrovascular diseases, such as neurasthenia, coronary heart disease, insomnia, and palpitations. The active components of Salviae Miltiorrhizae Radix et Rhizoma are complex and exhibit a variety of pharmacological effects. These components include water-soluble salvianolic acids and lipid-soluble tanshinones. Modern pharmacological studies have proven that Salviae Miltiorrhizae Radix et Rhizoma and its active components possess antioxidant, anti-inflammatory, anti-tumor, anti-fibrosis, and neuroprotective properties. In recent years, increasing attention has been paid to the pharmacological effects and mechanisms of Salviae Miltiorrhizae Radix et Rhizoma and its active components in treating depression. This paper systematically reviews the antidepressant mechanisms of Salviae Miltiorrhizae Radix et Rhizoma and its main active components from the regulation of monoamine neurotransmitters, the hypothalamic-pituitary-adrenal axis, neurotrophic factors, and neuroinflammation. In addition, this paper summarizes the clinical applications of the prescriptions containing Salviae Miltiorrhizae Radix et Rhizoma in the treatment of depression, providing new insights for further research on the pharmacological mechanisms of Salviae Miltiorrhizae Radix et Rhizoma in treating depression.
3.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
4.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
9.Clinical Value of Tumor-Stroma Ratio Combined with KRAS/NRAS/BRAF Gene Status in Prognostic Assessment of Patients with Colorectal Cancer
Ziyang ZHANG ; Yuanfei LI ; Yuntong GUO ; Gen ZHU ; Guang YANG ; Yu WANG
Cancer Research on Prevention and Treatment 2025;52(8):676-681
Objective To investigate the clinical value of tumor-stroma ratio (TSR) in combination with KRAS, BRAF, NRAS, and microsatellite status for prognostic assessment of patients with colorectal cancer. Methods A total of 51 colorectal cancer cases meeting the inclusion and exclusion criteria were enrolled in this study. TSR levels were evaluated through optical microscopy. The KRAS/NRAS/BRAF mutation profiles and microsatellite status were determined in accordance with genetic testing results. Clinical data, pathological characteristics, and survival outcomes were systematically recorded. Results Among the 51 patients with colorectal cancer, 19 (37.3%) were categorized into the low stromal group and 32 (62.7%) into the high stromal group. Statistically significant differences were observed between the two groups in drug resistance, M stage, TNM stage, neural invasion, and microsatellite status (P<0.05). Compared with patients exhibiting high TSR, those with low TSR demonstrated significantly increased recurrence rates (5 vs. 21 cases, P=0.007), shortened disease-free survival (34.21 vs. 14.34 months, P=0.001), and reduced overall survival (38.79 vs. 23.09 months, P=0.021). Multivariate Cox regression analysis identified N stage, M stage, TNM stage, neural invasion, lymphovascular invasion, and TSR as independent risk factors for disease-free survival. N stage, M stage, neural invasion, lymphovascular invasion, and TSR emerged as independent prognostic factors for overall survival (P<0.05). Although the combined models of TSR with KRAS, NRAS, BRAF, and microsatellite status, respectively, demonstrated overall statistical significance (P<0.05), none of the dummy variables in these models reached individually statistical significance (P>0.05), and therefore cannot be considered independent prognostic factors. Conclusion TSR serves as an independent predictor of poor prognosis in advanced colorectal cancer, with patients exhibiting low TSR demonstrating a significantly higher risk of recurrence and metastasis than those with high TSR. For patients with colon cancer undergoing first-line palliative chemotherapy after postoperative recurrence, histopathological assessment of TSR in primary tumor sites holds prognostic value and may serve as a relevant factor for evaluating treatment resistance in clinical management.
10.Pharmacological effects and drug design research progress of fucoxanthin
Yuxin ZHANG ; Ziyang DENG ; Can WANG ; Dan ZENG
China Pharmacy 2025;36(17):2216-2220
Fucoxanthin is a pigment found in plants and animals such as algae, marine plankton and aquatic shellfish, and holds significant potential for development in the pharmaceutical field. This review introduces the anti-inflammatory, antioxidant, anticancer, anti-obesity, and other pharmacological effects of fucoxanthin, as well as recent advances in drug design research. It was found that fucoxanthin can exert anti-inflammatory and antioxidant effects through mechanisms such as activating AMP- activated protein kinase related signaling pathways, regulating the expression of inflammatory factors, altering microbial stability, thereby improving conditions such as metabolic associated fatty liver disease and colitis. It can exert selective antitumor effects through multi-target synergistic actions; and it was also found that it can exert anti-obesity effects by regulating the intestinal microbiota. Its characteristic functional groups (such as hydroxyl and epoxy groups) possess target specificity and reversible inhibitory properties, making it a suitable template for guiding the design and development of novel drugs, thereby providing new insights for breaking through the limitations of traditional drug design.

Result Analysis
Print
Save
E-mail