1.Factors affecting Pomacea distribution and prediction of suitable distribution areas of Pomacea in Dali Bai Autonomous Prefecture of Yunnan Province
Zhongqiu LI ; Yuhua LIU ; Yunhai GUO ; Zixin WEI ; Junhu CHEN ; Qiang WANG ; Tianmei LI ; Shizhu LI
Chinese Journal of Schistosomiasis Control 2025;37(1):69-75
Objective To investigate the factors affecting the distribution of Pomacea and project the trends in the spread of suitable distribution areas of Pomacea in 2050 and 2070 in Dali Bai Autonomous Prefecture, so as to provide insights into Pomacea control in the prefecture. Methods The longitudes and latitudes of Pomacea sampling sites were captured based on Pomacea field survey data in 12 cities (counties) of Dali Bai Autonomous Prefecture from 2023 to 2024. A total of 19 climatic factors (annual mean temperature, mean diurnal range, isothermality, temperature seasonality, maximum temperature of the warmest month, minimum temperature of the coldest month, temperature annual range, mean temperature of the wettest quarter, mean temperature of the driest quarter, mean temperature of the warmest month, mean temperature of the coldest month, annual precipitation, precipitation of the wettest month, precipitation of the driest month, precipitation seasonality, precipitation of the wettest quarter, precipitation of the driest quarter, mean temperature of the warmest quarter, and mean temperature of the coldest quarter) and representative concentration pathways (RCPs) were retrieved from the world climate database (www.worldclim.org). All climatic variables were employed to create a maximum entropy (MaxEnt) model. The predictive accuracy of the model was assessed with the area under the receiver operating characteristic (ROC) curve (AUC), and the contributions of these 19 climatic factors to the distribution of Pomacea were analyzed in Dali Bai Autonomous Prefecture using Jackknife test. In addition, the suitable distribution areas of Pomacea were predicted with the MaxEnt model in Dali Bai Autonomous Prefecture in 2024 and in 2050 and 2070 under RCP4.5. Results Data pertaining to 91 Pomacea sampling sites were captured. ROC analysis revealed the MaxEnt model had an AUC value of 0.885 ± 0.088 for predicting the suitable distribution areas of Pomacea in Dali Bai Autonomous Prefecture. Of the 19 climatic factors, the maximum temperature of the warmest month had the highest contribution to the distribution of Pomacea in Dali Bai Autonomous Prefecture, followed by mean temperature of the driest quarter, mean temperature of the wettest quarter and minimum temperature of the coldest month. The suitable distribution area of Pomacea was predicted to be 14 555.69 km2 in Dali Bai Autonomous Prefecture in 2024, and would expand gradually to the southeastern part of the prefecture in the future due to climatic factors. The suitable distribution areas of Pomacea were projected to expand to 21 475.61 km2 in 2050 and 25 782.52 km2 in 2070 in Dali Bai Autonomous Prefecture, respectively. Conclusions Temperature is an important contributor to the distribution of Pomacea in Dali Bai Autonomous Prefecture, and the suitable distribution area of Pomacea will gradually expand to the southeastern part of the prefecture in 2050 and 2070.
2.Identification of unknown pollutants in drinking water based on solid-phase extraction and supramolecular solvent extraction
Zixin QIAN ; Yuhang CHEN ; Chao FENG ; Yuanjie LIN ; Qian XU ; Ziwei LIANG ; Xinyu WANG ; Dasheng LU ; Ping XIAO ; Zhijun ZHOU
Journal of Environmental and Occupational Medicine 2025;42(7):854-861
Background With the progression of industrialization, an increasing number of emerging contaminants are entering aquatic environments, posing significant threats to the safety of drinking water. Therefore, establishing a system for identifying unknown hazardous factors and implementing safety warning mechanisms for drinking water is of paramount importance. Among these efforts, non-target screening plays a critical role, but its effectiveness is largely constrained by the scope of coverage of sample pre-treatment methods. Objective To integrate modern chromatography/mass spectrometry techniques with advanced data mining methods to develop a non-discriminatory sample pre-treatment method for comprehensive enrichment of unknown contaminants in drinking water, laying a technical foundation for the discovery and identification of unknown organic hazardous factors in drinking water. Methods A non-discriminatory pre-treatment method based on supramolecular and solid-phase extraction was developed. The final target compounds including 333 pesticides, 194 pharmaceuticals and personal care products (PPCPs), and 59 per- and polyfluoroalkyl substances (PFASs) were used for optimizing the pre-treatment method, confirming its coverage. The impacts of different eluents on the absolute recovery rates of target compounds were compared to select the conditions with the highest recovery for sample pre-treatment. The effects of different supramolecular solvents and salt concentrations on target compound recovery were also evaluated to determine the most suitable solvent and salt concentration. Results The solid-phase extraction elution solvents, supramolecular extraction solvents, and salt concentrations were optimized based on the target compound recovery rates. The optimal recovery conditions were achieved using 2 mL methanol, 2 mL methanol (containing 1% formic acid), 2 mL ethyl acetate, 2 mL dichloromethane, hexanediol supramolecular solvent, and 426 mg salt. The detection method developed based on these conditions showed a good linear relationship for all target compounds in the range of 0.1-100.0 ng·mL−1, with R² > 0.99. The method’s limit of detection ranged from 0.01 ng−1 to 0.95 ng−1, and 95% of target compounds were recovered in the range of 20%-120%, with relative standard deviation (RSD) less than 30%, indicating good precision. Conclusion The combined pre-treatment method of solid-phase extraction and supramolecular solvent extraction can effectively enrich contaminants in drinking water across low, medium, and high polarities, enabling broad-spectrum enrichment of diverse trace contaminants in drinking water. It provides technical support for broad-spectrum, high-throughput screening and identification of organic pollutants in drinking water, and also serves as a reference for establishing urban drinking water public safety warning systems.
3.Pharmacological Effect of Nuanxinkang Powder on Ventricular Remodeling in Post-infarction Mice Through"Metabolic-Inflammatory"Network Regulating Macrophage Polarization
Zhijun LIN ; Zixin CHEN ; Jialin JIANG ; Xin DONG ; Zhuoji GUAN ; Lingjun WANG
Traditional Chinese Drug Research & Clinical Pharmacology 2024;35(2):159-167
Objective To explore the mechanism of Nuanxinkang Powder(aka.NXK,composed of Ginseng Radix et Rhizoma Rubra and Ilex Pubescens Radix)on improving ventricular remodeling in post-infarction mice based on the"metabolic-inflammatory"network regulating macrophage polarization.Methods ①Thirty C57BL/6J male mice were randomly divided into three groups:sham-operation group,model group,and NXK group(1.65 g·kg-1),with 10 mice in each group;the mouse model of myocardial infarction was replicated using left anterior descending coronary artery ligation;and the drug was administered by gavage once a day for 4 consecutive weeks.Masson staining was used to detect collagen deposition in myocardial tissue;ultrasound was used to detect cardiac function in mice:left ventricular ejection fraction(LVEF),left ventricular anterior wall thickness at end-systole(LVAWS)and left ventricular anterior wall thickness at end-diastole(LVAWD);flow cytometry was used to detect distribution of cardiac macrophages in mice;qPCR was used to detect mRNA expressions of lactate dehydrogenase A(LDHA),carnitine palmitoyltransferase 1(CPT-1),glucose transport protein 4(GLUT4),isocitrate dehydrogenase(IDH),and succinate dehydrogenase(SDHa)in heart tissue.②NXK was given 1.15 g·kg-1 NXK suspension to rats by gavage twice a day for 5 consecutive days to prepare NXK-containing serum.Lipopolysaccharide(LPS)-induced RAW 264.7 cells were used to construct a pro-inflammatory macrophage model.The cells were grouped into the following groups:blank serum control group(medium containing 5%blank serum+5%fetal bovine serum),NXK drug-containing serum group(medium containing 5%NXK drug-containing serum+5%fetal bovine serum),lipopolysaccharide group(medium containing 5%blank serum+5%fetal bovine serum+200 μg·mL-1 lipopolysaccharide),NXK drug-containing serum+ lipopolysaccharide group(medium containing 5%NXK drug-containing serum+5%fetal bovine serum+200 μ g·mL-1 lipopolysaccharide),all the groups were intervened for 16 hours.Glycolysis stress test was used to detect the level of glycolysis in RAW 264.7 cells;qPCR was used to detect the mRNA expression of mitochondrial pyruvate carrier(MPC1)in RAW 264.7 cells;and MitoSox Red fluorescent staining was used to detect the level of oxidative stress damage in mitochondria of RAW 264.7 cells.Results ①Compared with the sham-operation group,the blue-stained area of cardiac collagen fibres in mice of the model group was significantly increased,accompanied by thinning of the ventricular wall and enlargement of the left ventricular cavity;cardiac function indexes,such as LVEF,LVAWS,LVAWD,etc.,were all significantly reduced(P<0.01,P<0.001);the mRNA expressions of LDHA and CPT-1 were significantly up-regulated in the cardiac tissues of mice(P<0.05),and the mRNA expressions of GLUT4,IDH and SDHa were significantly down-regulated(P<0.05,P<0.01),and CD86 staining positive cell was significantly increased(P<0.001).Compared with the model group,mice in the NXK group showed a significant decrease in cardiac collagen fiber deposition and an increase in the thickness of the ventricular wall;cardiac function indexes such as LVEF,LVAWS and LVAWD were significantly increased(P<0.05,P<0.01,P<0.001);and the mRNA expressions of LDHA and CPT-1 in the cardiac tissues of the mice were significantly down-regulated(P<0.01,P<0.001),mRNA expressions of GLUT4,SDHa and IDH were significantly up-regulated(P<0.01),and the number of CD86 positive cells was significantly reduced(P<0.001).②Compared with the blank serum control group,the cytosolic glycolysis level and ROS level of macrophages in the NXK serum-containing group did not change significantly(P>0.05),whereas the glycolysis level and ROS level of macrophages in the lipopolysaccharide group were significantly increased(P<0.01),and the mRNA expression of MPC1 was significantly down-regulated(P<0.001).Compared with the lipopolysaccharide group,the macrophage glycolysis level and ROS level were significantly reduced in the NXK serum-containing + lipopolysaccharide group(P<0.05,P<0.01),and mRNA expression of MPC1 was significantly up-regulated(P<0.001).Conclusion NXK can reduce myocardial fibrosis and ventricular remodeling after myocardial infarction and improve cardiac function in mice,and its mechanism may be related to the down-regulation of mRNA expression of LDHA in cardiac tissues,the up-regulation of mRNA expression of GLUT4,the improvement of cardiac glucose uptake after myocardial infarction,the inhibition of pro-inflammatory macrophage glycolysis,the increase in the expressions of SDHa and IDH to alleviate the accumulation of succinate and citrate,and the reduction of reactive oxygen species(ROS)generation,thereby reducing pro-inflammatory macrophage hyperpolarisation.
4.Advances in research on mechanisms related to myocardial regeneration in neonatal murine
Mengqi CHEN ; Tingting LIU ; Fangling SUN ; Xin TIAN ; Wenrong ZHENG ; Zixin ZHU ; Yufeng WANG ; Liansu MA ; Wen WANG
Chinese Journal of Comparative Medicine 2024;34(2):144-153
Cardiovascular disease is a health hazard to humans and systolic heart failure due to myocardial infarction is a major cause of death.It was previously thought that myocardial cells of the adult mammalian heart possess a limited ability to proliferate and self-renew.However,it has been widely reported that mammals have the ability to regenerate the myocardium,which is restricted to early postnatal life,and that it is strong enough to repair damaged heart tissue.The discovery of myocardial regeneration in neonatal hearts has provided an ideal animal model to investigate the mechanisms that affect myocardial regeneration,and many mechanisms that reverse myocardial cell cycle arrest and promote myocardial regeneration have been revealed.In this article,we review the factors affecting gene expression for myocardial regeneration(e.g.,ncRNAs and transcription factors),myocardial regeneration-related signaling pathways,and the regulation of myocardial regeneration by non-myocardial cells(e.g.,extracellular matrix,immune response,and epicardium)to provide directions for achieving myocardial regeneration after myocardial injury in adult mammals.
5.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement.
Liyuan CHEN ; Huajie YU ; Zixin LI ; Yu WANG ; Shanshan JIN ; Min YU ; Lisha ZHU ; Chengye DING ; Xiaolan WU ; Tianhao WU ; Chunlei XUN ; Yanheng ZHOU ; Danqing HE ; Yan LIU
International Journal of Oral Science 2024;16(1):3-3
Pyroptosis, an inflammatory caspase-dependent programmed cell death, plays a vital role in maintaining tissue homeostasis and activating inflammatory responses. Orthodontic tooth movement (OTM) is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament (PDL) progenitor cells. However, whether and how force induces PDL progenitor cell pyroptosis, thereby influencing OTM and alveolar bone remodeling remains unknown. In this study, we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process. Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively. Using Caspase-1-/- mice, we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1. Moreover, mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro, which influenced osteoclastogenesis. Mechanistically, transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells. Overall, this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli, indicating a promising approach to accelerate OTM by targeting Caspase-1.
Animals
;
Humans
;
Mice
;
Rats
;
Bone Remodeling/physiology*
;
Caspase 1
;
Periodontal Ligament
;
Pyroptosis
;
Tooth Movement Techniques
6.Shuangshen Ningxin Capsules Regulates Mitochondrial Fission and Fusion to Alleviate Myocardial Ischemia-reperfusion Injury in Rats
Gaojie XIN ; Yuanyuan CHEN ; Zixin LIU ; Yue YOU ; Ce CAO ; Aoao WANG ; Hongxu MENG ; Xiao HAN ; Jianxun LIU ; Lei LI ; Jianhua FU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):87-94
ObjectiveTo explore whether the mechanism of Shuangshen Ningxin capsules (SSNX) in alleviating myocardial ischemia-reperfusion injury (MIRI) in rats is related to the regulation of mitochondrial fission and fusion. MethodThis study focused on Sprague Dawley (SD) rats and ligated the left anterior descending branch of the coronary artery to construct a rat model of MIRI. The rats were divided into the sham operation group, model group, SSNX group (90 mg·kg-1) and trimetazidine group (5.4 mg·kg-1). The activity of superoxide dismutase (SOD) and the content of malondialdehyde (MDA) were detected by micro method. Changes in mitochondrial membrane potential (△Ψm) and the degree of mitochondrial permeability transition pore (mPTP) opening were detected by the chemical fluorescence method. The intracellular adenosine triphosphate (ATP) level was detected by the luciferase assay. The messenger ribonucleic acid (mRNA) and protein expression levels of mitochondrial fission and fusion related factors dynamin-related protein 1 (DRP1), mitochondrial fission 1 protein (FIS1), optic atrophy protein 1 (OPA1), mitochondrial outer membrane fusion protein 1 (MFN1), and MFN2 were detected by real-time polymerase chain reaction (real-time PCR) and Western blot. ResultCompared with the sham operation group, the model group showed a decrease in serum SOD activity and an increase in MDA content. The opening level of mPTP, the level of △Ψm and ATP content decreased, the protein expressions of mitochondrial fission factors DRP1 and FIS1 increased, and the protein expressions and mRNA transcription levels of fusion related factors OPA1 and MFN1 decreased. Compared with the model group,SSNX significantly increased serum SOD activity, reduced MDA content, increased intracellular ATP level and △Ψm, reduced the opening level of mPTP, downregulated the protein expressions of mitochondrial fission factors DRP1 and FIS1, and increased the mRNA transcription levels and protein expressions of fusion related factors OPA1 and MFN1. ConclusionSSNX inhibits the expressions of mitochondrial fission factors DRP1 and FIS1, and increases the expressions of fusion related factors OPA1 and MFN1, inhibiting mitochondrial fission and increasing mitochondrial fusion, thereby alleviating MIRI.
7.Prognositic value of anoikis and tumor immune microenvironment-related gene in the treatment of osteosarcoma
Dong WANG ; Qing DENG ; Yi PENG ; Zhaochen TONG ; Zixin LI ; Liping HUANG ; Jin ZENG ; Jinsong LI ; Jinglei MIAO ; Shijie CHEN
Journal of Central South University(Medical Sciences) 2024;49(5):758-774
Objective:Osteosarcoma is a highly aggressive primary malignant bone tumor commonly seen in children and adolescents,with a poor prognosis.Anchorage-dependent cell death(anoikis)has been proven to be indispensable in tumor metastasis,regulating the migration and adhesion of tumor cells at the primary site.However,as a type of programmed cell death,anoikis is rarely studied in osteosarcoma,especially in the tumor immune microenvironment.This study aims to clarify prognostic value of anoikis and tumor immune microenvironment-related gene in the treatment of osteosarcoma. Methods:Anoikis-related genes(ANRGs)were obtained from GeneCards.Clinical information and ANRGs expression profiles of osteosarcoma patients were sourced from the therapeutically applicable research to generate effective therapies and Gene Expression Omnibus(GEO)databases.ANRGs highly associated with tumor immune microenvironment were identified by the estimate package and the weighted gene coexpression network analysis(WGCNA)algorithm.Machine learning algorithms were performed to construct long-term survival predictive strategy,each sample was divided into high-risk and low-risk subgroups,which was further verified in the GEO cohort.Finally,based on single-cell RNA-seq from the GEO database,analysis was done on the function of signature genes in the osteosarcoma tumor microenvironment. Results:A total of 51 hub ANRGs closely associated with the tumor microenvironment were identified,from which 3 genes(MERTK,BNIP3,S100A8)were selected to construct the prognostic model.Significant differences in immune cell activation and immune-related signaling pathways were observed between the high-risk and low-risk groups based on tumor microenvironment analysis(all P<0.05).Additionally,characteristic genes within the osteosarcoma microenvironment were identified in regulation of intercellular crosstalk through the GAS6-MERTK signaling pathway. Conclusion:The prognostic model based on ANRGs and tumor microenvironment demonstrate good predictive power and provide more personalized treatment options for patients with osteosarcoma.
8.Exploring the feasibility of using ChatGPT in plastic surgery teaching
Zixin WANG ; Boxuan WEI ; Tao ZAN
Chinese Journal of Plastic Surgery 2024;40(9):1006-1011
Plastic surgery is characterized by high degree of specialization, a broadscope of diseases inclusion and rapid advancements in knowledge. It is closely related to many disciplines, and there is great heterogeneity among different patients, which requires comprehensive abilities of doctors. However, plastic surgery teaching in China is currently marked by a short training cycle, a uniform training mode, and students’ time constraints and heavy tasks. Chat generative pre-trained transformer (ChatGPT), a large-scale language model introduced by the artificial intelligence company OpenAI, can use deep learning technology to generate natural language texts, understand the context of a conversation and then generate responses similar to those of humans, and is widely used in various industries, including the medical field. This review began by identifying the current challenges in plastic surgery teaching, introduced potential applications of ChatGPT in the field, and outlined its advantages. It also discussed the limitations and potential future directions for its development.
9.Effects of eicosanoic acid on proliferation and migration of human retinal vascular endothelial cells by mediating increased expression of angiopoietin-like protein 4 after binding to peroxisome proliferator-activated receptor 8
Yuhang YANG ; Hui QI ; Lijun DONG ; Zixin FAN ; Xiaofeng LU ; Mingliang WANG ; Zhen YU ; Hetian LEI ; Guoming ZHANG
Recent Advances in Ophthalmology 2024;44(9):679-685
Objective To investigate the effects of eicosanoic acid(C20DC)on the proliferation and migration of human retinal endothelial cells(HRECs)and its mechanism.Methods The optimal working concentration of C20DC in human retinal pigment epithelium 19(ARPE-19)cells and HRECs was determined as 30 mg·L-1 and 25 mg·L-1,respec-tively.HRECs were divided into the C20DC treatment group(HRECs treated with C20DC)and the control group[HRECs treated with dimethyl sulfoxide(DMSO)].The effects of C20DC on the migration and proliferation of HRECs were detec-ted by cell proliferation and migration experiments.The molecular docking method was used to simulate the binding ability of C20DC to peroxisome proliferator-activated receptor δ(PPARδ).ARPE-19 cells were divided into the C20DC+ARPE-19 group(ARPE-19 cells treated with C20DC)and the DMSO+ARPE-19 group(ARPE-19 cells treated with DMSO).The ex-pression levels of PPARδ and angiopoietin-like protein 4(ANGPTL4)in ARPE-19 cells and ANGPTL4 protein in HRECs were detected using Western blot.The ANGPTL4 protein expression levels in ARPE-19 cells and HRECs were quantitatively analyzed using enzyme-linked immunosorbent assay(ELISA).Results Compared with the control group,the prolifera-tion and migration of cells in the C20DC treatment group significantly increased(both P<0.05),and C20DC could stably bind to PPAR8(binding energy:-7.20 kcal·mol-1).Western blot showed that the expression level of ANGPTL4 protein in the C20DC+ARPE-19 group was higher than that in the DMSO+ARPE-19 group,and the difference was statistically sig-nificant(P<0.05);there was no statistically significant difference in the expression level of PPARδ receptor protein be-tween the two groups(P>0.05).The expression level of ANGPTL4 protein in the C20DC treatment group was higher than that in the control group,and the difference was statistically significant(P<0.05).ELISA quantitative analysis showed that the expression level of ANGPTL4 in the C20DC+ARPE-19 group was higher than that in the DMSO+ARPE-19 group(P<0.001);the expression level of ANGPTL4 in the C20DC treatment group was higher than that in the control group,and the difference was statistically significant(P<0.05).Conclusion C20DC can promote the expression of ANGPTL4 pro-tein by binding to PPARδ and thus increase the proliferation and migration of retinal related cells(HRECs and ARPE-19 cells).Its mechanism may be related to the increased angiogenesis in retinopathy of prematurity.
10.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.

Result Analysis
Print
Save
E-mail