1.Distal dynamic locking and distal static locking of proximal femoral bionic intramedullary nails: a biomechanical finite element analysis
Yuchuan WANG ; Xiaodong CHENG ; Yanbin ZHU ; Yonglong LI ; Zhongzheng WANG ; Yanjiang YANG ; Wei CHEN ; Yingze ZHANG
Chinese Journal of Orthopaedic Trauma 2024;26(2):138-142
Objective:To characterize the biomechanics of distal dynamic locking and distal static locking of proximal femur bionic nails (PFBN) in fixation of intertrochanteric fractures by a finite element analysis.Methods:The CT image data from the hip to the upper tibia from an adult male volunteer were used to establish a three-dimensional model of the femur by Mimics 20.0 and Geomagic 2013 which was processed further into a model of Evans type I intertrochanteric fracture by software NX 12.0. With reference to the internal fixation parameters commonly used, 4 models of PFBN fixation were established: distal single transverse nail dynamic locking (model A), single oblique nail dynamic locking (model B), single nail static locking (model C) and double nail dynamic locking (model D). Abaqus 6.14 software was used to load and analyze the internal fixation stresses and displacements of fracture ends.Results:Under a 2100N loading, the peak stress was located upon the main nail in the 4 models. The smallest peak stress upon the main nail was in Model D (161.9 MPa), decreased by 15.9% compared with model A (192.5 MPa), by 15.6% compared with model B (191.9 MPa), and by 0.9% compared with model C (163.3 MPa). The peak stress upon the fixation screw was the largest in model A (95.3 MPa), the smallest in model B (91.5 MPa), and 91.5 MPa and 92.2 MPa in models C and D, respectively. The overall displacements of the implants, in a descending order, were 10.14 mm in model A, 10.10 mm in model B, 10.09 mm in model C, and 10.05 mm in model D. Similarly, the displacements of fracture ends were 0.125 mm in model A, 0.121 mm in model B, 0.110 mm in model C, and 0.098 mm in model D.Conclusion:Compared with dynamic locking, distal static locking of PFBN provides a better mechanical stability and reduces stress concentration upon internal fixation.
2.Differential expression and bioinformatics analysis of microRNAs in exosomes of sheep poxvirus-infected cells
Xiaoqin MA ; Beibei ZHANG ; Hongyu WANG ; Yun GAO ; Lan WANG ; Mingyu HE ; Zhongzheng ZHU ; Xiaoshan CHAO ; Ying WANG ; Juntao DING
Korean Journal of Veterinary Research 2024;64(4):e23-
Sheep pox is widespread worldwide and is the most severe animal pox virus infection. This study aimed to identify the key microRNAs (miRNAs) differentially expressed in the exosomes of sheep poxvirus-infected cells and their target genes and related pathways and provide a theoretical basis for an in-depth understanding of the molecular mechanisms of sheep poxvirus-infected cells. In this study, the differentially expressed miRNAs were verified by quantitative polymerase chain reaction (qPCR), and the target genes of miRNAs were predicted and analyzed by bioinformatics. The qPCR results showed that the expression trends of oar-miR-21, oar-miR-10b, oar-let-7f, oar-let-7b, and oar-miR-221 were consistent with the sequencing results. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes results showed that differentially expressed miRNAs were mainly involved in the immune system processes of the Arf6 downstream pathway. The target genes Reactome pathways were mainly enriched in the RAC1 GTPase cycle, CDC42 GTPase cycle, RHO GTPase cycle, RHOV GTPase cycle, and post-transcriptional silencing of small RNAs. The transcription factors SP4, NKX6-1, MEF2A, SP1, EGR1, and POU2F1 that may be connected to sheep pox virus (SPPV)-infected cells were discovered by transcription factor annotation screening. In conclusion, this study screened for differentially expressed miRNAs in SPPV-infected cells and performed a series of bioinformatic analyses of their target genes to provide a theoretical basis for the molecular mechanism of sheep pox virus infections of cells. The data can be used as basic information in future studies on the defense mechanisms against poxvirus infections.
3.Differential expression and bioinformatics analysis of microRNAs in exosomes of sheep poxvirus-infected cells
Xiaoqin MA ; Beibei ZHANG ; Hongyu WANG ; Yun GAO ; Lan WANG ; Mingyu HE ; Zhongzheng ZHU ; Xiaoshan CHAO ; Ying WANG ; Juntao DING
Korean Journal of Veterinary Research 2024;64(4):e23-
Sheep pox is widespread worldwide and is the most severe animal pox virus infection. This study aimed to identify the key microRNAs (miRNAs) differentially expressed in the exosomes of sheep poxvirus-infected cells and their target genes and related pathways and provide a theoretical basis for an in-depth understanding of the molecular mechanisms of sheep poxvirus-infected cells. In this study, the differentially expressed miRNAs were verified by quantitative polymerase chain reaction (qPCR), and the target genes of miRNAs were predicted and analyzed by bioinformatics. The qPCR results showed that the expression trends of oar-miR-21, oar-miR-10b, oar-let-7f, oar-let-7b, and oar-miR-221 were consistent with the sequencing results. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes results showed that differentially expressed miRNAs were mainly involved in the immune system processes of the Arf6 downstream pathway. The target genes Reactome pathways were mainly enriched in the RAC1 GTPase cycle, CDC42 GTPase cycle, RHO GTPase cycle, RHOV GTPase cycle, and post-transcriptional silencing of small RNAs. The transcription factors SP4, NKX6-1, MEF2A, SP1, EGR1, and POU2F1 that may be connected to sheep pox virus (SPPV)-infected cells were discovered by transcription factor annotation screening. In conclusion, this study screened for differentially expressed miRNAs in SPPV-infected cells and performed a series of bioinformatic analyses of their target genes to provide a theoretical basis for the molecular mechanism of sheep pox virus infections of cells. The data can be used as basic information in future studies on the defense mechanisms against poxvirus infections.
4.Differential expression and bioinformatics analysis of microRNAs in exosomes of sheep poxvirus-infected cells
Xiaoqin MA ; Beibei ZHANG ; Hongyu WANG ; Yun GAO ; Lan WANG ; Mingyu HE ; Zhongzheng ZHU ; Xiaoshan CHAO ; Ying WANG ; Juntao DING
Korean Journal of Veterinary Research 2024;64(4):e23-
Sheep pox is widespread worldwide and is the most severe animal pox virus infection. This study aimed to identify the key microRNAs (miRNAs) differentially expressed in the exosomes of sheep poxvirus-infected cells and their target genes and related pathways and provide a theoretical basis for an in-depth understanding of the molecular mechanisms of sheep poxvirus-infected cells. In this study, the differentially expressed miRNAs were verified by quantitative polymerase chain reaction (qPCR), and the target genes of miRNAs were predicted and analyzed by bioinformatics. The qPCR results showed that the expression trends of oar-miR-21, oar-miR-10b, oar-let-7f, oar-let-7b, and oar-miR-221 were consistent with the sequencing results. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes results showed that differentially expressed miRNAs were mainly involved in the immune system processes of the Arf6 downstream pathway. The target genes Reactome pathways were mainly enriched in the RAC1 GTPase cycle, CDC42 GTPase cycle, RHO GTPase cycle, RHOV GTPase cycle, and post-transcriptional silencing of small RNAs. The transcription factors SP4, NKX6-1, MEF2A, SP1, EGR1, and POU2F1 that may be connected to sheep pox virus (SPPV)-infected cells were discovered by transcription factor annotation screening. In conclusion, this study screened for differentially expressed miRNAs in SPPV-infected cells and performed a series of bioinformatic analyses of their target genes to provide a theoretical basis for the molecular mechanism of sheep pox virus infections of cells. The data can be used as basic information in future studies on the defense mechanisms against poxvirus infections.
5.Differential expression and bioinformatics analysis of microRNAs in exosomes of sheep poxvirus-infected cells
Xiaoqin MA ; Beibei ZHANG ; Hongyu WANG ; Yun GAO ; Lan WANG ; Mingyu HE ; Zhongzheng ZHU ; Xiaoshan CHAO ; Ying WANG ; Juntao DING
Korean Journal of Veterinary Research 2024;64(4):e23-
Sheep pox is widespread worldwide and is the most severe animal pox virus infection. This study aimed to identify the key microRNAs (miRNAs) differentially expressed in the exosomes of sheep poxvirus-infected cells and their target genes and related pathways and provide a theoretical basis for an in-depth understanding of the molecular mechanisms of sheep poxvirus-infected cells. In this study, the differentially expressed miRNAs were verified by quantitative polymerase chain reaction (qPCR), and the target genes of miRNAs were predicted and analyzed by bioinformatics. The qPCR results showed that the expression trends of oar-miR-21, oar-miR-10b, oar-let-7f, oar-let-7b, and oar-miR-221 were consistent with the sequencing results. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes results showed that differentially expressed miRNAs were mainly involved in the immune system processes of the Arf6 downstream pathway. The target genes Reactome pathways were mainly enriched in the RAC1 GTPase cycle, CDC42 GTPase cycle, RHO GTPase cycle, RHOV GTPase cycle, and post-transcriptional silencing of small RNAs. The transcription factors SP4, NKX6-1, MEF2A, SP1, EGR1, and POU2F1 that may be connected to sheep pox virus (SPPV)-infected cells were discovered by transcription factor annotation screening. In conclusion, this study screened for differentially expressed miRNAs in SPPV-infected cells and performed a series of bioinformatic analyses of their target genes to provide a theoretical basis for the molecular mechanism of sheep pox virus infections of cells. The data can be used as basic information in future studies on the defense mechanisms against poxvirus infections.
6.Differential expression and bioinformatics analysis of microRNAs in exosomes of sheep poxvirus-infected cells
Xiaoqin MA ; Beibei ZHANG ; Hongyu WANG ; Yun GAO ; Lan WANG ; Mingyu HE ; Zhongzheng ZHU ; Xiaoshan CHAO ; Ying WANG ; Juntao DING
Korean Journal of Veterinary Research 2024;64(4):e23-
Sheep pox is widespread worldwide and is the most severe animal pox virus infection. This study aimed to identify the key microRNAs (miRNAs) differentially expressed in the exosomes of sheep poxvirus-infected cells and their target genes and related pathways and provide a theoretical basis for an in-depth understanding of the molecular mechanisms of sheep poxvirus-infected cells. In this study, the differentially expressed miRNAs were verified by quantitative polymerase chain reaction (qPCR), and the target genes of miRNAs were predicted and analyzed by bioinformatics. The qPCR results showed that the expression trends of oar-miR-21, oar-miR-10b, oar-let-7f, oar-let-7b, and oar-miR-221 were consistent with the sequencing results. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes results showed that differentially expressed miRNAs were mainly involved in the immune system processes of the Arf6 downstream pathway. The target genes Reactome pathways were mainly enriched in the RAC1 GTPase cycle, CDC42 GTPase cycle, RHO GTPase cycle, RHOV GTPase cycle, and post-transcriptional silencing of small RNAs. The transcription factors SP4, NKX6-1, MEF2A, SP1, EGR1, and POU2F1 that may be connected to sheep pox virus (SPPV)-infected cells were discovered by transcription factor annotation screening. In conclusion, this study screened for differentially expressed miRNAs in SPPV-infected cells and performed a series of bioinformatic analyses of their target genes to provide a theoretical basis for the molecular mechanism of sheep pox virus infections of cells. The data can be used as basic information in future studies on the defense mechanisms against poxvirus infections.
7.Clinical and molecular genetic characteristics of 24 families of hereditary neuropathy with liability to pressure palsy and literature review
Wanqian CAO ; Shunxiang HUANG ; Huadong ZHAO ; Zhongzheng LI ; Xiying ZHU ; Lei LIU ; Ruxu ZHANG
Journal of Central South University(Medical Sciences) 2023;48(10):1572-1582
Objective:Hereditary neuropathy with liability to pressure palsy(HNPP)is a rare autosomal dominant peripheral neuropathy,usually caused by heterozygous deletion mutations in the peripheral myelin protein 22(PMP22)gene.This study aims to investigate the clinical and molecular genetic characteristics of HNPP. Methods:HNPP patients in the Department of Neurology at Third Xiangya Hospital of Central South University from 2009 to 2023 were included in this study.The general clinical data,nervous electrophysiological and molecular genetic examination results were collected and analyzed.Molecular genetic examination was to screen for deletion of PMP22 gene using multiplex ligation-dependent probe amplification(MLPA)after extracting genomic DNA from peripheral blood;and if no PMP22 deletion mutation was detected,next-generation sequencing was used to screen for PMP22 point mutations.The related literatures of HNPP were reviewed,and the clinical and molecular genetic characteristics of HNPP patients were analyzed. Results:A total of 34 HNPP patients from 24 unrelated Chinese Han families were included in this study,including 25 males and 9 females.The average age at illness onset was 22.0 years.Sixty-two point five percent of the families had a positive family history.Among them,30 patients had symptoms of peripheral nerve paralysis.Patients often presented with paroxysmal single limb weakness with(or)numbness(25/30),and some patients had paroxysmal unilateral recurrent laryngeal nerve(vagus nerve)paralysis(2/30).Physical examination revealed muscle weakness(23/29),hypoesthesia(9/29),weakened or absent ankle reflexes(20/29),distal limb muscle atrophy(8/29)and high arched feet(5/29).Most patients(26/30)could fully recover to normal after an acute attack.Thirty-one patients in our group underwent nervous electrophysiological examination,and showed multiple demyelinating peripheral neuropathies with both motor and sensory nerves involved.Most patients showed significantly prolonged distal motor latency(DML),mild to moderate nerve conduction velocity slowing,decreased amplitude of compound muscle action potential(CMAP)and sensory nerve action potential(SNAP),and sometimes with conduction block.Nerve motor conduction velocity was(48.5±5.5)m/s,and the CMAP amplitude was(8.4±5.1)mV.Nerve sensory conduction velocity was(37.4±10.5)m/s,and the SNAP amplitude was(14.4±15.2)μV.There were 24 families,23 of whom had the classical PMP22 deletion,the last one had a heterozygous pathogenic variant in the PMP22 gene sequence(c.434delT).By reviewing clinical data and genetic testing results of reported 1 734 HNPP families,we found that heterozygous deletion mutation of PMP22 was the most common pathogenic mutation of HNPP(93.4%).Other patients were caused by PMP22 small mutations(4.0%),PMP22 heterozygous gross deletions(0.6%),and PMP22 complex rearrangements(0.1%).Thirty-eight sorts of HNPP-related PMP22 small mutations was reported,including missense mutations(10/38),nonsense mutations(4/38),base deletion mutations(13/38),base insertion mutations(3/38),and shear site mutations(8/38).HNPP patients most often presented with episodic painless single nerve palsy.Common peroneal nerve,ulnar nerve,and brachial plexus nerve were the most common involved nerves,accounting for about 75%.Only eighteen patients with cranial nerve involved was reported. Conclusion:Heterozygous deletion mutation of PMP22 is the most common pathogenic mutation of HNPP.Patients is characterized by episodic and painless peripheral nerve paralysis,mainly involving common peroneal nerve,ulnar nerve,and other peripheral nerves.Nervous electrophysiological examination has high sensitivity and specificity for the diagnosis of HNPP,which is manifested by extensive demyelinating changes.For patients with suspected HNPP,nervous electrophysiological examination and PMP22-MLPA detection are preferred.Sanger sequencing or next generation sequencing can be considered to detect other mutations of PMP22.
8.Genetic diversity analysis of forty-three insertion/deletion loci for forensic individual identification in Han Chinese from Beijing based on a novel panel.
Congying ZHAO ; Jinlong YANG ; Hui XU ; Shuyan MEI ; Yating FANG ; Qiong LAN ; Yajun DENG ; Bofeng ZHU
Journal of Zhejiang University. Science. B 2022;23(3):241-248
Due to the virtues of no stutter peaks, low rates of mutation, and short amplicon sizes, insertion/deletion (InDel) polymorphism is an indispensable tool for analyzing degraded DNA samples from crime scenes for human identifications (Wang et al., 2021). Herein, a self-developed panel of 43 InDel loci constructed previously by our group was utilized to evaluate the genetic diversities and explore the genetic background of the Han Chinese from Beijing (HCB) including 301 random healthy individuals. The lengths of amplicons at 43 InDel loci in this panel ranged from 87 to 199 bp, which indicated that the panel could be used as an effective tool to utilize highly degraded DNA samples for human identity testing. The loci in this panel were validated and performed well for forensic degraded DNA samples (Jin et al., 2021). The combined discrimination power (PD) and combined probability of exclusion (PE) values in this panel indicated that the 43 InDel loci could be used as the candidate markers in personal identification and parentage testing of HCB. In addition, population genetic relationships between the HCB and 26 reference populations from five continents based on 19 overlapped InDel loci were displayed by constructing a phylogenetic tree, principal component analysis (PCA), and population genetic structure analysis. The results illustrated that the HCB had closer genetic relationships with the Han populations from Chinese different regions.
Beijing
;
China
;
Forensic Genetics/methods*
;
Gene Frequency
;
Genetics, Population
;
Humans
;
INDEL Mutation
;
Phylogeny
9. Copy number aberrations of genes related to extrohepatic metastasis-free survival after operation for hepatocellular carcinoma
Lingling BAO ; Zhongzheng ZHU ; Bingji WEN ; Xiaoxi WAN ; Yingquan YE ; Lü CHEN ; Songqin HE ; Wenming CONG
Chinese Journal of Hepatology 2017;25(5):349-353
Objective:
To investigate the molecular markers of copy number aberrations (CNAs) of genes related to extrohepatic metastasis-free survival after the operation for hepatocellular carcinoma (HCC).
Methods:
The CNA status of 20 candidate genes in 66 HCC samples was detected by microarray comparative genomic hybridization. The associations between gene CNAs and extrohepatic metastasis-free survival were evaluated using the Cox regression model, Log-rank test, and Kaplan-Meier survival analysis.
Results:
Multivariate Cox analysis revealed that the independent risk factors for metastasis-free survival were MDM4 gain (hazard ratio [
10.Association of chromosome 17q copy number variation with overall survival of patients with hepatocellular carcinoma and screening of potential target genes.
Jing ZHANG ; Bingji WEN ; Wenming CONG ; Lyu CHEN ; Jun JIANG ; Wei PAN ; Jiajia HE ; Zhongzheng ZHU
Chinese Journal of Medical Genetics 2015;32(5):615-619
OBJECTIVE To assess the association of copy number variations (CNVs) in chromosome 17q with the overall survival(OS) of patients with hepatocellular carcinoma(HCC), and to screen for target genes contained in the OS-related CNVs. METHODS A total of 174 HCC cases were enrolled. For 66 patients, the follow-up data was available. High-resolution Agilent Hu-244A array comparative genomic hybridization (aCGH) and Affymetrix U133 Plus 2.0 expression arrays were used to detect CNVs and gene expression of genes from the 17q region, respectively. The association of CNVs and OS was assessed with Log-rank test, Kaplan-Meier survival analysis, and Cox proportional hazards models. The gene expression in HCCs with 17q gain, HCCs without, and non-tumor liver tissues were compared with a Mann-Whitney U test. RESULTS Univariate association analysis showed that copy number gain in 17q25.1-25.3 was significantly associated with reduced OS (Log-rank test, P = 0.00002), and HCC cases with 17q25.1-25.3 gain had a 4.76-fold (95%CI: 2.31-9.81) increased hazard ratio (HR) for death from HCC, as compared to those without the gain. Multivariate Cox proportional hazards regression model revealed 17q25.1-25.3 gain to be an independent prognostic marker for poor OS (HR = 3.17, 95%CI: 1.39-7.26, P = 0.006). The expression levels of 18 genes in 17q25.1-25.3 including SLC9A3R1, GRB2, and TK1 were significantly increased in HCCs with gain than in those without (all P < 0.01) and non-tumor liver tissues (all P < 0.01). CONCLUSION The association of 17q25.1-25.3 gain with reduced OS has indicated that it is a prognostic marker for poor patient survival in HCC, for which SLC9A3R1, GRB2, and TK1 are candidate genes.
Adult
;
Aged
;
Carcinoma, Hepatocellular
;
genetics
;
mortality
;
Chromosomes, Human, Pair 17
;
DNA Copy Number Variations
;
Female
;
Humans
;
Liver Neoplasms
;
genetics
;
mortality
;
Male
;
Middle Aged

Result Analysis
Print
Save
E-mail