1.LPS adsorption and inflammation alleviation by polymyxin B-modified liposomes for atherosclerosis treatment.
Huiwen LIU ; Honglan WANG ; Qiyu LI ; Yiwei WANG ; Ying HE ; Xuejing LI ; Chunyan SUN ; Onder ERGONUL ; Füsun CAN ; Zhiqing PANG ; Bo ZHANG ; Yu HU
Acta Pharmaceutica Sinica B 2023;13(9):3817-3833
Chronic inflammation is critical in the onset and progression of atherosclerosis (AS). The lipopolysaccharide (LPS) level in the circulation system is elevated in AS patients and animal models, which is correlated with the severity of AS. Inspired by the underlying mechanism that LPS could drive the polarization of macrophages toward the M1 phenotype, aggravate inflammation, and ultimately contribute to the exacerbation of AS, LPS in the circulation system was supposed to be the therapeutic target for AS treatment. In the present study, polymyxin (PMB) covalently conjugated to PEGylated liposomes (PLPs) were formulated to adsorb LPS through specific interactions between PMB and LPS. In vitro, the experiments demonstrated that PLPs could adsorb LPS, reduce the polarization of macrophages to M1 phenotype and inhibit the formation of foam cells. In vivo, the study revealed that PLPs treatment reduced the serum levels of LPS and pro-inflammatory cytokines, decreased the proportion of M1-type macrophages in AS plaque, stabilized AS plaque, and downsized the plaque burdens in arteries, which eventually attenuated the progression of AS. Our study highlighted LPS in the circulation system as the therapeutic target for AS and provided an alternative strategy for AS treatment.
2.Hippo pathway-manipulating neutrophil-mimic hybrid nanoparticles for cardiac ischemic injury via modulation of local immunity and cardiac regeneration.
Qiaozi WANG ; Yanan SONG ; Jinfeng GAO ; Qiyu LI ; Jing CHEN ; Yifang XIE ; Zhengmin WANG ; Haipeng TAN ; Hongbo YANG ; Ning ZHANG ; Juying QIAN ; Zhiqing PANG ; Zheyong HUANG ; Junbo GE
Acta Pharmaceutica Sinica B 2023;13(12):4999-5015
The promise of regeneration therapy for restoration of damaged myocardium after cardiac ischemic injury relies on targeted delivery of proliferative molecules into cardiomyocytes whose healing benefits are still limited owing to severe immune microenvironment due to local high concentration of proinflammatory cytokines. Optimal therapeutic strategies are therefore in urgent need to both modulate local immunity and deliver proliferative molecules. Here, we addressed this unmet need by developing neutrophil-mimic nanoparticles NM@miR, fabricated by coating hybrid neutrophil membranes with artificial lipids onto mesoporous silica nanoparticles (MSNs) loaded with microRNA-10b. The hybrid membrane could endow nanoparticles with strong capacity to migrate into inflammatory sites and neutralize proinflammatory cytokines and increase the delivery efficiency of microRNA-10b into adult mammalian cardiomyocytes (CMs) by fusing with cell membranes and leading to the release of MSNs-miR into cytosol. Upon NM@miR administration, this nanoparticle could home to the injured myocardium, restore the local immunity, and efficiently deliver microRNA-10b to cardiomyocytes, which could reduce the activation of Hippo-YAP pathway mediated by excessive cytokines and exert the best proliferative effect of miR-10b. This combination therapy could finally improve cardiac function and mitigate ventricular remodeling. Consequently, this work offers a combination strategy of immunity modulation and proliferative molecule delivery to boost cardiac regeneration after injury.
3.Perfluorooctyl bromide nanoemulsions holding MnO2 nanoparticles with dual-modality imaging and glutathione depletion enhanced HIFU-eliciting tumor immunogenic cell death.
Xinping KUAI ; Yuefei ZHU ; Zheng YUAN ; Shengyu WANG ; Lin LIN ; Xiaodan YE ; Yiping LU ; Yu LUO ; Zhiqing PANG ; Daoying GENG ; Bo YIN
Acta Pharmaceutica Sinica B 2022;12(2):967-981
Tumor-targeted immunotherapy is a remarkable breakthrough, offering the inimitable advantage of specific tumoricidal effects with reduced immune-associated cytotoxicity. However, existing platforms suffer from low efficacy, inability to induce strong immunogenic cell death (ICD), and restrained capacity of transforming immune-deserted tumors into immune-cultivated ones. Here, an innovative platform, perfluorooctyl bromide (PFOB) nanoemulsions holding MnO2 nanoparticles (MBP), was developed to orchestrate cancer immunotherapy, serving as a theranostic nanoagent for MRI/CT dual-modality imaging and advanced ICD. By simultaneously depleting the GSH and eliciting the ICD effect via high-intensity focused ultrasound (HIFU) therapy, the MBP nanomedicine can regulate the tumor immune microenvironment by inducing maturation of dendritic cells (DCs) and facilitating the activation of CD8+ and CD4+ T cells. The synergistic GSH depletion and HIFU ablation also amplify the inhibition of tumor growth and lung metastasis. Together, these findings inaugurate a new strategy of tumor-targeted immunotherapy, realizing a novel therapeutics paradigm with great clinical significance.
4.Nanoplateletsomes restrain metastatic tumor formation through decoy and active targeting in a preclinical mouse model.
Longlong ZHANG ; Yuefei ZHU ; Xunbin WEI ; Xing CHEN ; Yang LI ; Ying ZHU ; Jiaxuan XIA ; Yiheng HUANG ; Yongzhuo HUANG ; Jianxin WANG ; Zhiqing PANG
Acta Pharmaceutica Sinica B 2022;12(8):3427-3447
Platelets buoy up cancer metastasis via arresting cancer cells, enhancing their adhesion, and facilitating their extravasation through the vasculature. When deprived of intracellular and granular contents, platelet decoys could prevent metastatic tumor formation. Inspired by these, we developed nanoplatesomes by fusing platelet membranes with lipid membranes (P-Lipo) to restrain metastatic tumor formation more efficiently. It was shown nanoplateletsomes bound with circulating tumor cells (CTC) efficiently, interfered with CTC arrest by vessel endothelial cells, CTC extravasation through endothelial layers, and epithelial-mesenchymal transition of tumor cells as nanodecoys. More importantly, in the mouse breast tumor metastasis model, nanoplateletsomes could decrease CTC survival in the blood and counteract metastatic tumor growth efficiently by inhibiting the inflammation and suppressing CTC escape. Therefore, nanoplatelesomes might usher in a new avenue to suppress lung metastasis.
5.Broad-spectrum and powerful neutralization of bacterial toxins by erythroliposomes with the help of macrophage uptake and degradation.
Chunying LIU ; Shuangrong RUAN ; Ying HE ; Xuejing LI ; Yuefei ZHU ; Honglan WANG ; Hanwei HUANG ; Zhiqing PANG
Acta Pharmaceutica Sinica B 2022;12(11):4235-4248
Anti-virulence strategy has been considered as one of the most promising approaches to combat drug-resistant bacterial infections. Pore-forming toxins (PFTs) are the largest class of bacterial toxins, inflicting their virulence effect through creating pores on the cell membrane. However, current solutions for eliminating PFTs are mostly designed based on their molecular structure, requiring customized design for different interactions. In the present study, we employed erythroliposome (denoted as RM-PL), a biomimetic platform constructed by artificial lipid membranes and natural erythrocyte membranes, to neutralize different hemolytic PFTs regardless of their molecular structure. When tested with model PFTs, including α-hemolysin, listeriolysin O, and streptolysin O, RM-PL could completely inhibit toxin-induced hemolysis in a concentration-dependent manner. In vivo studies further confirmed that RM-PL could efficiently neutralize various toxins and save animals' lives without causing damage to organs or tissues. In addition, we explored the underlying mechanisms of this efficient detoxification ability and found that it was mainly macrophages in the spleen and the liver that took up RM-PL-absorbed toxins through a variety of endocytosis pathways and digested them in lysosomes. In summary, the biomimetic RM-PL presented a promising system for broad-spectrum and powerful toxin neutralization with a mechanism of lysosome-mediated toxin degradation.
6.Editorial of Special Issue on Tumor Microenvironment and Drug Delivery.
Huile GAO ; Zhiqing PANG ; Wei HE
Acta Pharmaceutica Sinica B 2020;10(11):2016-2017
7.Nanomedicines modulating tumor immunosuppressive cells to enhance cancer immunotherapy.
Yuefei ZHU ; Xiangrong YU ; Soracha D THAMPHIWATANA ; Ying ZHENG ; Zhiqing PANG
Acta Pharmaceutica Sinica B 2020;10(11):2054-2074
Cancer immunotherapy has veered the paradigm of cancer treatment. Despite recent advances in immunotherapy for improved antitumor efficacy, the complicated tumor microenvironment (TME) is highly immunosuppressive, yielding both astounding and unsatisfactory clinical successes. In this regard, clinical outcomes of currently available immunotherapy are confined to the varied immune systems owing in large part to the lack of understanding of the complexity and diversity of the immune context of the TME. Various advanced designs of nanomedicines could still not fully surmount the delivery barriers of the TME. The immunosuppressive TME may even dampen the efficacy of antitumor immunity. Recently, some nanotechnology-related strategies have been inaugurated to modulate the immunosuppressive cells within the tumor immune microenvironment (TIME) for robust immunotherapeutic responses. In this review, we will highlight the current understanding of the immunosuppressive TIME and identify disparate subclasses of TIME that possess an impact on immunotherapy, especially those unique classes associated with the immunosuppressive effect. The immunoregulatory cell types inside the immunosuppressive TIME will be delineated along with the existing and potential approaches for immunosuppressive cell modulation. After introducing the various strategies, we will ultimately outline both the novel therapeutic targets and the potential issues that affect the efficacy of TIME-based nanomedicines.
8.Biomimetic nanoparticles for inflammation targeting.
Kai JIN ; Zimiao LUO ; Bo ZHANG ; Zhiqing PANG
Acta Pharmaceutica Sinica B 2018;8(1):23-33
There have been many recent exciting developments in biomimetic nanoparticles for biomedical applications. Inflammation, a protective response involving immune cells, blood vessels, and molecular mediators directed against harmful stimuli, is closely associated with many human diseases. As a result, biomimetic nanoparticles mimicking immune cells can help achieve molecular imaging and precise drug delivery to these inflammatory sites. This review is focused on inflammation-targeting biomimetic nanoparticles and will provide an in-depth look at the design of these nanoparticles to maximize their benefits for disease diagnosis and treatment.
9.Establishment of hemophilia A patient-specific inducible pluripotent stem cells with urine cells.
Zhiqing HU ; Xuyun HU ; Jialun PANG ; Xiaolin WANG ; Siyuan Lin PENG ; Zhuo LI ; Yong WU ; Lingqian WU ; Desheng LIANG
Chinese Journal of Medical Genetics 2015;32(5):609-614
OBJECTIVE To generate hemophilia A (HA) patient-specific inducible pluripotent stem cells (iPSCs) and induce endothelial differentiation. METHODS Tubular epithelial cells were isolated and cultured from the urine of HA patients. The iPSCs were generated by forced expression of Yamanaka factors (Oct4, Sox2, c-Myc and Klf4) using retroviruses and characterized by cell morphology, pluripotent marker staining and in vivo differentiation through teratoma formation. Induced endothelial differentiation of the iPSCs was achieved with the OP9 cell co-culture method. RESULTS Patient-specific iPSCs were generated from urine cells of the HA patients, which could be identified by cell morphology, pluripotent stem cell surface marker staining and in vivo differentiation of three germ layers. The teratoma experiment has confirmed that such cells could differentiate into endothelial cells expressing the endothelial-specific markers CD144, CD31 and vWF. CONCLUSION HA patient-specific iPSCs could be generated from urine cells and can differentiate into endothelial cells. This has provided a new HA disease modeling approach and may serve as an applicable autologous cell source for gene correction and cell therapy studies for HA.
Cell Differentiation
;
Hemophilia A
;
pathology
;
therapy
;
urine
;
Humans
;
Induced Pluripotent Stem Cells
;
cytology
;
transplantation
;
Urine
;
cytology
10.Preparation and in vitro release characteristics of nerve growth factor thermosensitive gel for treating deafness
Zilan ZHU ; Wei LIU ; Laiyou WANG ; Zhiqing PANG ; Xuesong YU
Chinese Journal of Primary Medicine and Pharmacy 2014;21(8):1121-1123,后插2
Objective To prepare polypeptide nerve growth factor (NGF) thermosentitive gel and observe drug release in vitro,in order to provide scientific information for biopharmaceuticals delivery system design aiming to treat the inner disease.Methods The thermosensitive in situ gel was prepared with NGF as main component and Pluronic F127 as the gel matrixes.The effect of concentration of gel matrix PF127 on lower critical solution temperature(LCST) were investigated.In vitro release kinetic studies were performed using membraneless dissolution method and reversed-phase high performance liquid chromatography (HPLC) method was adopted to determine NGF content in the dissolution medium.Results The average LCST of NGF-loaded gel prepared by different concentration of PF127 was 28.48-36.26℃ and the gels had good stability.The in vitro release kinetics was well characterized by sustained release and can be fitted by zero order kinetics.The in vitro accumulated release ratio of NGF in the thermosensitive gel reached to above 95%.hβ-NGF loaded in higher PF127 gel resulted in a more sustained release of hβ-NGF from the thermosensitive gel.Conclusion Well-prepared NGF thermosensitive gel is a promising inner ear-oriented drug delivery system for treating deafness and deserves to further development.

Result Analysis
Print
Save
E-mail