1.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell carcinoma treatment
CHEN Hongjun ; LEI Qi ; WANG Zhilin ; ZHONG Xiaowu ; QIU Ya ; LI Lihua
Journal of Prevention and Treatment for Stomatological Diseases 2024;32(3):178-187
Objective:
To explore the molecular mechanism of resveratrol (RES) in the treatment of oral squamous cell carcinoma (OSCC) through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.
Methods:
The Swiss Target Prediction(http://www.swisstargetprediction.ch), SEA (http://sea.bkslab.org)database, and Pharm mapper database(http://lilab-ecust.cn) were used to retrieve RES-related targets, and the DISGENET (www.disgenet.org), OMIM (https://omim.org) and GeneCards (https://www.genecards.org) databases were used to screen OSCC disease targets. The intersection of drugs and disease targets was determined, and Cytoscape 3.7.2 software was used to construct a "drug-diseasetarget pathway" network. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was used to construct a target protein interaction network, and the DAVID database was used for enrichment analysis of key proteins. Finally, molecular docking validation of key proteins was performed using AutoDock and PyMOL. The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC; western blot was used to determine the effect of resveratrol at different concentrations (50, 100) μmol/L on the expression of Src tyrosine kinase (SRC), epidermal growth factor receptor (EGFR), estrogen receptor gene 1 (ESR1), and phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT) signaling pathway proteins in OSCC HSC-3 cells.
Results:
A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified. A total of 116 potential common targets were obtained by intersecting drugs with disease targets. These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation, peptide tyrosine phosphorylation, transmembrane receptor protein tyrosine kinase signaling pathway, and positive regulation of RNA polymerase Ⅱ promoter transcription, and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects. The docking results of resveratrol with OSCC molecules indicated that key targets, such as EGFR, ESR1, and SRC, have good binding activity. The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC, EGFR, ESR1, p-PI3K, and p-AKT in HSC-3 cells in a dose-dependent manner.
Conclusion
RES can inhibit the expression of its targets EGFR, ESR1, SRC, p-PI3K, and p-AKT in OSCC cells.
2.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell car-cinoma treatment
Hongjun CHEN ; Qi LEI ; Zhilin WANG ; Xiaowu ZHONG ; Ya QIU ; Lihua LI
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):178-187
Objective To explore the molecular mechanism of resveratrol(RES)in the treatment of oral squamous cell carcinoma(OSCC)through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.Methods The Swiss Target Prediction(http://www.swisstargetprediction.ch),SEA(http://sea.bkslab.org)database,and Pharm map-per database(http://lilab-ecust.cn)were used to retrieve RES-related targets,and the DISGENET(www.disgenet.org),OMIM(https://omim.org)and GeneCards(https://www.genecards.org)databases were used to screen OSCC disease tar-gets.The intersection of drugs and disease targets was determined,and Cytoscape 3.7.2 software was used to construct a"drug-diseasetarget pathway"network.The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING)data-base was used to construct a target protein interaction network,and the DAVID database was used for enrichment analy-sis of key proteins.Finally,molecular docking validation of key proteins was performed using AutoDock and PyMOL.The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC;western blot was used to determine the effect of resveratrol at different concentrations(50,100)μmol/L on the expression of Src tyrosine kinase(SRC),epidermal growth factor receptor(EGFR),estrogen re-ceptor gene 1(ESR1),and phosphatidylinositol 3 kinase/protein kinase B(PI3K/AKT)signaling pathway proteins in OSCC HSC-3 cells.Results A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified.A total of 116 potential common targets were obtained by intersecting drugs with disease targets.These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation,peptide tyrosine phosphorylation,trans-membrane receptor protein tyrosine kinase signaling pathway,and positive regulation of RNA polymerase Ⅱ promot-er transcription,and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects.The docking results of resveratrol with OSCC molecules indicated that key targets,such as EGFR,ESR1,and SRC,have good binding activi-ty.The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC,EGFR,ESR1,p-PI3K,and p-AKT in HSC-3 cells in a dose-dependent manner.Conclusion RES can inhibit the expres-sion of its targets EGFR,ESR1,SRC,p-PI3K,and p-AKT in OSCC cells.
3.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell car-cinoma treatment
Hongjun CHEN ; Qi LEI ; Zhilin WANG ; Xiaowu ZHONG ; Ya QIU ; Lihua LI
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):178-187
Objective To explore the molecular mechanism of resveratrol(RES)in the treatment of oral squamous cell carcinoma(OSCC)through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.Methods The Swiss Target Prediction(http://www.swisstargetprediction.ch),SEA(http://sea.bkslab.org)database,and Pharm map-per database(http://lilab-ecust.cn)were used to retrieve RES-related targets,and the DISGENET(www.disgenet.org),OMIM(https://omim.org)and GeneCards(https://www.genecards.org)databases were used to screen OSCC disease tar-gets.The intersection of drugs and disease targets was determined,and Cytoscape 3.7.2 software was used to construct a"drug-diseasetarget pathway"network.The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING)data-base was used to construct a target protein interaction network,and the DAVID database was used for enrichment analy-sis of key proteins.Finally,molecular docking validation of key proteins was performed using AutoDock and PyMOL.The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC;western blot was used to determine the effect of resveratrol at different concentrations(50,100)μmol/L on the expression of Src tyrosine kinase(SRC),epidermal growth factor receptor(EGFR),estrogen re-ceptor gene 1(ESR1),and phosphatidylinositol 3 kinase/protein kinase B(PI3K/AKT)signaling pathway proteins in OSCC HSC-3 cells.Results A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified.A total of 116 potential common targets were obtained by intersecting drugs with disease targets.These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation,peptide tyrosine phosphorylation,trans-membrane receptor protein tyrosine kinase signaling pathway,and positive regulation of RNA polymerase Ⅱ promot-er transcription,and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects.The docking results of resveratrol with OSCC molecules indicated that key targets,such as EGFR,ESR1,and SRC,have good binding activi-ty.The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC,EGFR,ESR1,p-PI3K,and p-AKT in HSC-3 cells in a dose-dependent manner.Conclusion RES can inhibit the expres-sion of its targets EGFR,ESR1,SRC,p-PI3K,and p-AKT in OSCC cells.
4.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell car-cinoma treatment
Hongjun CHEN ; Qi LEI ; Zhilin WANG ; Xiaowu ZHONG ; Ya QIU ; Lihua LI
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):178-187
Objective To explore the molecular mechanism of resveratrol(RES)in the treatment of oral squamous cell carcinoma(OSCC)through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.Methods The Swiss Target Prediction(http://www.swisstargetprediction.ch),SEA(http://sea.bkslab.org)database,and Pharm map-per database(http://lilab-ecust.cn)were used to retrieve RES-related targets,and the DISGENET(www.disgenet.org),OMIM(https://omim.org)and GeneCards(https://www.genecards.org)databases were used to screen OSCC disease tar-gets.The intersection of drugs and disease targets was determined,and Cytoscape 3.7.2 software was used to construct a"drug-diseasetarget pathway"network.The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING)data-base was used to construct a target protein interaction network,and the DAVID database was used for enrichment analy-sis of key proteins.Finally,molecular docking validation of key proteins was performed using AutoDock and PyMOL.The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC;western blot was used to determine the effect of resveratrol at different concentrations(50,100)μmol/L on the expression of Src tyrosine kinase(SRC),epidermal growth factor receptor(EGFR),estrogen re-ceptor gene 1(ESR1),and phosphatidylinositol 3 kinase/protein kinase B(PI3K/AKT)signaling pathway proteins in OSCC HSC-3 cells.Results A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified.A total of 116 potential common targets were obtained by intersecting drugs with disease targets.These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation,peptide tyrosine phosphorylation,trans-membrane receptor protein tyrosine kinase signaling pathway,and positive regulation of RNA polymerase Ⅱ promot-er transcription,and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects.The docking results of resveratrol with OSCC molecules indicated that key targets,such as EGFR,ESR1,and SRC,have good binding activi-ty.The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC,EGFR,ESR1,p-PI3K,and p-AKT in HSC-3 cells in a dose-dependent manner.Conclusion RES can inhibit the expres-sion of its targets EGFR,ESR1,SRC,p-PI3K,and p-AKT in OSCC cells.
5.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell car-cinoma treatment
Hongjun CHEN ; Qi LEI ; Zhilin WANG ; Xiaowu ZHONG ; Ya QIU ; Lihua LI
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):178-187
Objective To explore the molecular mechanism of resveratrol(RES)in the treatment of oral squamous cell carcinoma(OSCC)through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.Methods The Swiss Target Prediction(http://www.swisstargetprediction.ch),SEA(http://sea.bkslab.org)database,and Pharm map-per database(http://lilab-ecust.cn)were used to retrieve RES-related targets,and the DISGENET(www.disgenet.org),OMIM(https://omim.org)and GeneCards(https://www.genecards.org)databases were used to screen OSCC disease tar-gets.The intersection of drugs and disease targets was determined,and Cytoscape 3.7.2 software was used to construct a"drug-diseasetarget pathway"network.The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING)data-base was used to construct a target protein interaction network,and the DAVID database was used for enrichment analy-sis of key proteins.Finally,molecular docking validation of key proteins was performed using AutoDock and PyMOL.The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC;western blot was used to determine the effect of resveratrol at different concentrations(50,100)μmol/L on the expression of Src tyrosine kinase(SRC),epidermal growth factor receptor(EGFR),estrogen re-ceptor gene 1(ESR1),and phosphatidylinositol 3 kinase/protein kinase B(PI3K/AKT)signaling pathway proteins in OSCC HSC-3 cells.Results A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified.A total of 116 potential common targets were obtained by intersecting drugs with disease targets.These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation,peptide tyrosine phosphorylation,trans-membrane receptor protein tyrosine kinase signaling pathway,and positive regulation of RNA polymerase Ⅱ promot-er transcription,and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects.The docking results of resveratrol with OSCC molecules indicated that key targets,such as EGFR,ESR1,and SRC,have good binding activi-ty.The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC,EGFR,ESR1,p-PI3K,and p-AKT in HSC-3 cells in a dose-dependent manner.Conclusion RES can inhibit the expres-sion of its targets EGFR,ESR1,SRC,p-PI3K,and p-AKT in OSCC cells.
6.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell car-cinoma treatment
Hongjun CHEN ; Qi LEI ; Zhilin WANG ; Xiaowu ZHONG ; Ya QIU ; Lihua LI
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):178-187
Objective To explore the molecular mechanism of resveratrol(RES)in the treatment of oral squamous cell carcinoma(OSCC)through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.Methods The Swiss Target Prediction(http://www.swisstargetprediction.ch),SEA(http://sea.bkslab.org)database,and Pharm map-per database(http://lilab-ecust.cn)were used to retrieve RES-related targets,and the DISGENET(www.disgenet.org),OMIM(https://omim.org)and GeneCards(https://www.genecards.org)databases were used to screen OSCC disease tar-gets.The intersection of drugs and disease targets was determined,and Cytoscape 3.7.2 software was used to construct a"drug-diseasetarget pathway"network.The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING)data-base was used to construct a target protein interaction network,and the DAVID database was used for enrichment analy-sis of key proteins.Finally,molecular docking validation of key proteins was performed using AutoDock and PyMOL.The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC;western blot was used to determine the effect of resveratrol at different concentrations(50,100)μmol/L on the expression of Src tyrosine kinase(SRC),epidermal growth factor receptor(EGFR),estrogen re-ceptor gene 1(ESR1),and phosphatidylinositol 3 kinase/protein kinase B(PI3K/AKT)signaling pathway proteins in OSCC HSC-3 cells.Results A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified.A total of 116 potential common targets were obtained by intersecting drugs with disease targets.These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation,peptide tyrosine phosphorylation,trans-membrane receptor protein tyrosine kinase signaling pathway,and positive regulation of RNA polymerase Ⅱ promot-er transcription,and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects.The docking results of resveratrol with OSCC molecules indicated that key targets,such as EGFR,ESR1,and SRC,have good binding activi-ty.The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC,EGFR,ESR1,p-PI3K,and p-AKT in HSC-3 cells in a dose-dependent manner.Conclusion RES can inhibit the expres-sion of its targets EGFR,ESR1,SRC,p-PI3K,and p-AKT in OSCC cells.
7.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell car-cinoma treatment
Hongjun CHEN ; Qi LEI ; Zhilin WANG ; Xiaowu ZHONG ; Ya QIU ; Lihua LI
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):178-187
Objective To explore the molecular mechanism of resveratrol(RES)in the treatment of oral squamous cell carcinoma(OSCC)through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.Methods The Swiss Target Prediction(http://www.swisstargetprediction.ch),SEA(http://sea.bkslab.org)database,and Pharm map-per database(http://lilab-ecust.cn)were used to retrieve RES-related targets,and the DISGENET(www.disgenet.org),OMIM(https://omim.org)and GeneCards(https://www.genecards.org)databases were used to screen OSCC disease tar-gets.The intersection of drugs and disease targets was determined,and Cytoscape 3.7.2 software was used to construct a"drug-diseasetarget pathway"network.The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING)data-base was used to construct a target protein interaction network,and the DAVID database was used for enrichment analy-sis of key proteins.Finally,molecular docking validation of key proteins was performed using AutoDock and PyMOL.The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC;western blot was used to determine the effect of resveratrol at different concentrations(50,100)μmol/L on the expression of Src tyrosine kinase(SRC),epidermal growth factor receptor(EGFR),estrogen re-ceptor gene 1(ESR1),and phosphatidylinositol 3 kinase/protein kinase B(PI3K/AKT)signaling pathway proteins in OSCC HSC-3 cells.Results A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified.A total of 116 potential common targets were obtained by intersecting drugs with disease targets.These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation,peptide tyrosine phosphorylation,trans-membrane receptor protein tyrosine kinase signaling pathway,and positive regulation of RNA polymerase Ⅱ promot-er transcription,and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects.The docking results of resveratrol with OSCC molecules indicated that key targets,such as EGFR,ESR1,and SRC,have good binding activi-ty.The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC,EGFR,ESR1,p-PI3K,and p-AKT in HSC-3 cells in a dose-dependent manner.Conclusion RES can inhibit the expres-sion of its targets EGFR,ESR1,SRC,p-PI3K,and p-AKT in OSCC cells.
8.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell car-cinoma treatment
Hongjun CHEN ; Qi LEI ; Zhilin WANG ; Xiaowu ZHONG ; Ya QIU ; Lihua LI
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):178-187
Objective To explore the molecular mechanism of resveratrol(RES)in the treatment of oral squamous cell carcinoma(OSCC)through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.Methods The Swiss Target Prediction(http://www.swisstargetprediction.ch),SEA(http://sea.bkslab.org)database,and Pharm map-per database(http://lilab-ecust.cn)were used to retrieve RES-related targets,and the DISGENET(www.disgenet.org),OMIM(https://omim.org)and GeneCards(https://www.genecards.org)databases were used to screen OSCC disease tar-gets.The intersection of drugs and disease targets was determined,and Cytoscape 3.7.2 software was used to construct a"drug-diseasetarget pathway"network.The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING)data-base was used to construct a target protein interaction network,and the DAVID database was used for enrichment analy-sis of key proteins.Finally,molecular docking validation of key proteins was performed using AutoDock and PyMOL.The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC;western blot was used to determine the effect of resveratrol at different concentrations(50,100)μmol/L on the expression of Src tyrosine kinase(SRC),epidermal growth factor receptor(EGFR),estrogen re-ceptor gene 1(ESR1),and phosphatidylinositol 3 kinase/protein kinase B(PI3K/AKT)signaling pathway proteins in OSCC HSC-3 cells.Results A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified.A total of 116 potential common targets were obtained by intersecting drugs with disease targets.These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation,peptide tyrosine phosphorylation,trans-membrane receptor protein tyrosine kinase signaling pathway,and positive regulation of RNA polymerase Ⅱ promot-er transcription,and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects.The docking results of resveratrol with OSCC molecules indicated that key targets,such as EGFR,ESR1,and SRC,have good binding activi-ty.The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC,EGFR,ESR1,p-PI3K,and p-AKT in HSC-3 cells in a dose-dependent manner.Conclusion RES can inhibit the expres-sion of its targets EGFR,ESR1,SRC,p-PI3K,and p-AKT in OSCC cells.
9.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell car-cinoma treatment
Hongjun CHEN ; Qi LEI ; Zhilin WANG ; Xiaowu ZHONG ; Ya QIU ; Lihua LI
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):178-187
Objective To explore the molecular mechanism of resveratrol(RES)in the treatment of oral squamous cell carcinoma(OSCC)through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.Methods The Swiss Target Prediction(http://www.swisstargetprediction.ch),SEA(http://sea.bkslab.org)database,and Pharm map-per database(http://lilab-ecust.cn)were used to retrieve RES-related targets,and the DISGENET(www.disgenet.org),OMIM(https://omim.org)and GeneCards(https://www.genecards.org)databases were used to screen OSCC disease tar-gets.The intersection of drugs and disease targets was determined,and Cytoscape 3.7.2 software was used to construct a"drug-diseasetarget pathway"network.The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING)data-base was used to construct a target protein interaction network,and the DAVID database was used for enrichment analy-sis of key proteins.Finally,molecular docking validation of key proteins was performed using AutoDock and PyMOL.The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC;western blot was used to determine the effect of resveratrol at different concentrations(50,100)μmol/L on the expression of Src tyrosine kinase(SRC),epidermal growth factor receptor(EGFR),estrogen re-ceptor gene 1(ESR1),and phosphatidylinositol 3 kinase/protein kinase B(PI3K/AKT)signaling pathway proteins in OSCC HSC-3 cells.Results A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified.A total of 116 potential common targets were obtained by intersecting drugs with disease targets.These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation,peptide tyrosine phosphorylation,trans-membrane receptor protein tyrosine kinase signaling pathway,and positive regulation of RNA polymerase Ⅱ promot-er transcription,and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects.The docking results of resveratrol with OSCC molecules indicated that key targets,such as EGFR,ESR1,and SRC,have good binding activi-ty.The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC,EGFR,ESR1,p-PI3K,and p-AKT in HSC-3 cells in a dose-dependent manner.Conclusion RES can inhibit the expres-sion of its targets EGFR,ESR1,SRC,p-PI3K,and p-AKT in OSCC cells.
10.Expression,purification and bioimformatics analysis of allergen protein Profilin from silkworm (Bombyx mori)
Wei HU ; Zhilin LIANG ; Lianglu WANG ; Huiling ZHONG ; Zhigang LIU
Chinese Journal of Immunology 2017;33(1):81-84
Objective:To obtain recombinant Profilin of silkworm,identify its immunogenicity,predict its B cell epitopes and construct the evolutionary trees. Methods: The nucleotide sequence of Profilin was acquired from NCBI,synthesized it and cloned it into pET-28 vector. Then,the recombinant plasimids were transformed to E. coli BL21. After induced by IPTG,recombinant protein was purified by Affinity chromatography. Furtherly,its allergenicity was identified by Western blot,the potential B cell epitopes was analyzed through DNAStar and build the evolutionary trees by MEGA5. 05. Results: The recombinant protein of Profilin was successfully expressed and purified by affinity chromatography. Besides,the protein contains a high IgE-binding activity with IgE existing in serum of patients allergic to silkworm. Conclusion: The recombinant proflilin has IgE-binding activity, and it is meaningful for fundamental research and specific diagnosis studies of allergic diseases caused by silkworm.


Result Analysis
Print
Save
E-mail