1.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell carcinoma treatment
CHEN Hongjun ; LEI Qi ; WANG Zhilin ; ZHONG Xiaowu ; QIU Ya ; LI Lihua
Journal of Prevention and Treatment for Stomatological Diseases 2024;32(3):178-187
Objective:
To explore the molecular mechanism of resveratrol (RES) in the treatment of oral squamous cell carcinoma (OSCC) through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.
Methods:
The Swiss Target Prediction(http://www.swisstargetprediction.ch), SEA (http://sea.bkslab.org)database, and Pharm mapper database(http://lilab-ecust.cn) were used to retrieve RES-related targets, and the DISGENET (www.disgenet.org), OMIM (https://omim.org) and GeneCards (https://www.genecards.org) databases were used to screen OSCC disease targets. The intersection of drugs and disease targets was determined, and Cytoscape 3.7.2 software was used to construct a "drug-diseasetarget pathway" network. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was used to construct a target protein interaction network, and the DAVID database was used for enrichment analysis of key proteins. Finally, molecular docking validation of key proteins was performed using AutoDock and PyMOL. The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC; western blot was used to determine the effect of resveratrol at different concentrations (50, 100) μmol/L on the expression of Src tyrosine kinase (SRC), epidermal growth factor receptor (EGFR), estrogen receptor gene 1 (ESR1), and phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT) signaling pathway proteins in OSCC HSC-3 cells.
Results:
A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified. A total of 116 potential common targets were obtained by intersecting drugs with disease targets. These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation, peptide tyrosine phosphorylation, transmembrane receptor protein tyrosine kinase signaling pathway, and positive regulation of RNA polymerase Ⅱ promoter transcription, and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects. The docking results of resveratrol with OSCC molecules indicated that key targets, such as EGFR, ESR1, and SRC, have good binding activity. The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC, EGFR, ESR1, p-PI3K, and p-AKT in HSC-3 cells in a dose-dependent manner.
Conclusion
RES can inhibit the expression of its targets EGFR, ESR1, SRC, p-PI3K, and p-AKT in OSCC cells.
2.Mechanism of satellite cell regulation and its role in ecological niche signaling during skeletal muscle regeneration
Jianda KONG ; Yujing MU ; Lei ZHU ; Zhilin LI ; Shijuan CHEN
Chinese Journal of Tissue Engineering Research 2024;28(7):1105-1111
BACKGROUND:Satellite cells are a specific population of adult stem cells contained in skeletal muscle that promote the regenerative reconstruction of injured skeletal muscle,but their specific mechanisms are not well established. OBJECTIVE:To review the regulatory role of satellite cells during skeletal muscle regeneration and the mechanism of interaction between satellite cells and their ecological niche signals,aiming to provide new research ideas and perspectives based on the summary of existing knowledge. METHODS:Web of Science,PubMed,CNKI,WanFang,and VIP databases were searched for literature published between January 2002 and June 2022.English search terms were"muscle,skeletal muscle,muscle injury,stem cells,satellite cells,muscle repair".Chinese search terms were"skeletal muscle,skeletal muscle regeneration,skeletal muscle reconstruction,satellite cells,ecological niche".The 66 included papers were organized and analyzed. RESULTS AND CONCLUSION:(1)Satellite cells exist in skeletal muscle and contribute to both the formation of new muscle fibers after injury and the effective growth of existing adult muscle fibers.(2)After the activation of quiescent satellite cells in satellite cells,the steps of satellite cell proliferation,differentiation and fusion to form muscle fibers during skeletal muscle regeneration are influenced by their intrinsic regulatory effects of different mechanisms.(3)Satellite cells can interact with myofibers,extracellular matrix,skeletal muscle junctions,fibroblast progenitor cells,immune cells and endothelial cells in the ecological niche signal to promote satellite cell activation,proliferation and differentiation to achieve effective skeletal muscle regeneration.(4)Possible breakthroughs in future research include:the division pattern of satellite cells in the body;the mechanisms regulating satellite cell transfer;the specific timing of satellite cell differentiation or self-renewal in vivo;and the interaction mechanisms between satellite cells and skeletal muscle junctions.(5)This review may provide some theoretical reference values for the field of injury reconstruction of skeletal muscle and its innovation.
3.Biological mechanism of satellite cell aging in skeletal muscles and potential coping strategies
Yingao XIE ; Jianda KONG ; Yun CHEN ; Zhilin LI ; Peng XU
Chinese Journal of Tissue Engineering Research 2024;28(25):4094-4100
BACKGROUND:Satellite cells are myogenic stem cells located between the muscle fiber membrane and the basement membrane.However,a comprehensive review of the aging mechanisms of satellite cells and their potential mitigation strategies is still lacking.This gap in knowledge hinders the effective guidance for current strategies aimed at attenuating skeletal muscle aging. OBJECTIVE:To review the mechanisms of satellite cell aging in skeletal muscle and the relevant strategies for mitigating this aging process. METHODS:Major databases were searched up to May 2023,including Web of Science,PubMed,China National Knowledge Infrastructure(CNKI),WanFang Data,and VIP.Chinese and English search terms included"skeletal muscle,satellite cells,aging,mechanism,and solution strategy".After strict inclusion and exclusion criteria were applied,78 articles were finally included. RESULTS AND CONCLUSION:(1)Satellite cells,situated between the muscle fiber membrane and basement membrane,possess proliferative and differentiative potential.They usually remain in a quiescent state but become activated in response to muscle tissue stimuli,participating in processes of repair and restoration of normal tissue structure.Aging leads to a reduction in satellite cell numbers,resulting in symptoms such as muscle weakness and decreased endurance.(2)Mechanisms of satellite cell aging primarily involve diminished regenerative capacity,perturbed niche interactions with changing ecology,age-dependent loss,and heterogeneity changes.Reduced satellite cell numbers and activity due to aging lead to slower muscle regeneration and increased injury recovery time.Errors during differentiation may occur,resulting in decreased muscle quality and function deterioration.(3)Strategies for mitigating satellite cell aging encompass modulation of the receptor environment of intra-body satellite cells,peripheral interventions to promote satellite cell regeneration,construction of human muscle models,and exercise and nutritional interventions to induce satellite cell proliferation.These strategies hold promise in offering novel insights and methods for satellite cell regeneration and treatment of skeletal muscle diseases.(4)Future research should delve into the mechanisms of satellite cell aging,explore the interaction between satellite cells and their niches,investigate the relationship of satellite cells with the immune system and mitochondrial function,and develop human muscle models to enhance research depth and accuracy.
4.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell car-cinoma treatment
Hongjun CHEN ; Qi LEI ; Zhilin WANG ; Xiaowu ZHONG ; Ya QIU ; Lihua LI
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):178-187
Objective To explore the molecular mechanism of resveratrol(RES)in the treatment of oral squamous cell carcinoma(OSCC)through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.Methods The Swiss Target Prediction(http://www.swisstargetprediction.ch),SEA(http://sea.bkslab.org)database,and Pharm map-per database(http://lilab-ecust.cn)were used to retrieve RES-related targets,and the DISGENET(www.disgenet.org),OMIM(https://omim.org)and GeneCards(https://www.genecards.org)databases were used to screen OSCC disease tar-gets.The intersection of drugs and disease targets was determined,and Cytoscape 3.7.2 software was used to construct a"drug-diseasetarget pathway"network.The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING)data-base was used to construct a target protein interaction network,and the DAVID database was used for enrichment analy-sis of key proteins.Finally,molecular docking validation of key proteins was performed using AutoDock and PyMOL.The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC;western blot was used to determine the effect of resveratrol at different concentrations(50,100)μmol/L on the expression of Src tyrosine kinase(SRC),epidermal growth factor receptor(EGFR),estrogen re-ceptor gene 1(ESR1),and phosphatidylinositol 3 kinase/protein kinase B(PI3K/AKT)signaling pathway proteins in OSCC HSC-3 cells.Results A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified.A total of 116 potential common targets were obtained by intersecting drugs with disease targets.These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation,peptide tyrosine phosphorylation,trans-membrane receptor protein tyrosine kinase signaling pathway,and positive regulation of RNA polymerase Ⅱ promot-er transcription,and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects.The docking results of resveratrol with OSCC molecules indicated that key targets,such as EGFR,ESR1,and SRC,have good binding activi-ty.The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC,EGFR,ESR1,p-PI3K,and p-AKT in HSC-3 cells in a dose-dependent manner.Conclusion RES can inhibit the expres-sion of its targets EGFR,ESR1,SRC,p-PI3K,and p-AKT in OSCC cells.
5.LSTM-XGBoost Based RR Intervals Time Series Prediction Method in Hypertensive Patients
Wenjie YU ; Hongwen CHEN ; Hongliang QI ; Zhilin PAN ; Hanwei LI ; Debin HU
Chinese Journal of Medical Instrumentation 2024;48(4):392-395
Objective The prediction of RR intervals in hypertensive patients can help clinicians to analyze and warn patients'heart condition.Methods Using 8 patients'data as samples,the RR intervals of patients were predicted by long short-term memory network(LSTM)and gradient lift tree(XGBoost),and the prediction results of the two models were combined by the inverse variance method to overcome the disadvantage of single model prediction.Results Compared with the single model,the proposed combined model had a different degree of improvement in the prediction of RR intervals in 8 patients.Conclusion LSTM-XGBoost model provides a method for predicting RR intervals in hypertensive patients,which has potential clinical feasibility.
6.Calenduloside E inhibits hepatocellular carcinoma cell proliferation and migration by down-regulating GPX4 and SLC7A11 expression through the autophagy pathway
Qianyi CHEN ; Shuhan SHANG ; Huan LU ; Sisi LI ; Zhimian SUN ; Xirui FAN ; Zhilin QI
Journal of Southern Medical University 2024;44(7):1327-1335
Objective To investigate the molecular mechanism through which calenduloside E inhibits hepatocellular carcinoma(HCC)cell proliferation and migration.Methods HCC cell lines HepG2 and Huh7 treated with calenduloside E were examined for changes in cell viability using CCK-8 assay and expressions of GPX4,SLC7A11,LC3,P62 and phosphorylation of Akt/mTOR using Western blotting.The effects LY294002 and Rapamycin(the inhibitor and activator of autophagy,respectively)on proliferation and migration of calenduloside E-treated HCC cells were evaluated using EdU and Transwell assays.The TCGA database was used to explore the expression levels of GPX4 and SLC7A11 in HCC and normal liver tissues and their correlation with the patients'survival outcomes.GPX4 and SLC7A11 expressions were also detected in HCC cells and normal hepatocytes using RT-qPCR and Western blotting.Results Calenduloside E obviously inhibited the viability of HCC cells.GPX4 and SLC7A11 were highly expressed in HCC tissues and cell lines,and their expression levels were negatively correlated with the patients'survival.In HCC cell lines,calenduloside E significantly inhibited the expressions of GPX4 and SLC7A11 proteins,activated the Akt-mTOR pathway,and enhanced the expression of LC3 II.The inhibitory effect of calenduloside E on GPX4 and SLC7A11 expressions was significantly enhanced by rapamycin but attenuated by LY294002.Inhibiting the autophagy pathway obviously diminished the inhibitory effect of calenduloside E on proliferation and migration of HCC cells,while activating this pathway produced the opposite effect.Conclusion Calenduside E inhibits the proliferation and migration of HCC cells by down-regulating GPX4 and SLC7A11 expression via the autophagy pathway.
7.LncRNA MAGI2-AS3 enhances cisplatin sensitivity of non-small cell lung cancer cells by regulating the miR-1269a/PTEN/AKT pathway
Xirui FAN ; Zhilin QI ; Yuanjie DENG ; Zihan YANG ; Li SUN ; Guohao LI ; Juanjuan LIANG ; Fei WU ; Liwen YUAN
Journal of Southern Medical University 2024;44(10):2033-2043
Objective To investigate the mechanism mediating the regulatory effect of lncRNA MAGI2-AS3 on cisplatin(DDP)resistance in non-small cell lung cancer(NSCLC).Methods MAGI2-AS3 and miR-1269a expression levels were detected by qRT-PCR in DDP-sensitive lung cancer cell lines(A549 and H1299)and their resistant counterparts(A549/DDP and H1299/DDP).In A549 and H1299 cells with MAGI2-AS3 silencing and A549/DDP and H1299/DDP cells overexpressing MAGI2-AS3,the effects of 20 μmol/L DDP on cell viability and apoptosis were examined with CCK-8 assay,colony formation assay,flow cytometry and Western blotting,and the changes in epithelial-mesenchymal transition(EMT)were assessed with wound healing and Transwell assays.The interaction between MAGI2-AS3,miR-1269a and PTEN was predicted using GEPIA,StarBase and miRDB and verified with luciferase reporter gene assay and radioimmunoprecipitation(RIP)assay.A miR-1269a mimic and pcDNA3.1-PTEN plasmid were used to perform the rescue assay.Results MAGI2-AS3 expression was significantly downregulated in lung cancer tissues(P<0.05)in association with a poor prognosis(P<0.05).In the two DDP-resistant lung cancer cell lines,MAGI2-AS3 expression was significantly lowered as compared with the sensitive cells.Silencing MAGI2-AS3 significantly enhanced cell viability and promoted EMT of A549 and H1299 cells irrespective of DDP treatment,and also decreased DDP-induced apoptosis of the cells.In A549/DDP and H1299/DDP cells,MAGI2-AS3 overexpression strongly repressed cell viability and EMT irrespective of DDP treatment and promoted DDP-induced cell apoptosis.Luciferase reporter gene and RIP assays confirmed the binding of MAGI2-AS3 with miR-1269a and the binding of miR-1269a with 3'-UTR domain of PTEN.The rescue assay demonstrated that MAGI2-AS3 acted as a sponge for miR-1269a to promote PTEN expression and downregulate AKT phosphorylation,thus inhibiting EMT and promoting DDP-induced apoptosis of A549/DDP cells.Conclusion MAGI2-AS3 enhances DDP sensitivity of NSCLC by targeted regulation of the miR-1269a/PTEN/AKT signaling axis.
8.Efficacy of low molecular weight heparin-assisted plasma exchange in the treatment of hyperlipidemic severe acute pancreatitis
Jun WANG ; Biwen YUAN ; Li YANG ; Zhilin CAO ; Xin HUANG
China Pharmacist 2024;28(10):245-251
Objective To investigate the clinical efficacy of low molecular weight heparin (LMWH)-assisted plasma exchange (PE) in the treatment of patients with hyperlipidemic severe acute pancreatitis (HLSAP).Methods Patients with HLSAP diagnosed and treated in Leshan People's Hospital were retrospectively selected from January 2023 to April 2024 and their clinical data were analyzed.According to the diagnosis and treatment plans,they were divided into the control group (PE) and the study group (LMWH-assisted PE).The coagulation function[fibrinogen (Fib),thrombin time (TT),activated partial thromboplastin time (APTT) and prothrombin time (PT)],plasma specific viscosity,lipid levels[total cholesterol (TC),triglyceride (TG)],inflammatory factors[white blood cell count (WBC),erythrocyte sedimentation rate (ESR),C reactive protein (CRP),amylase (AMY) and lipase (LYP)]were compared before and after treatment between the two groups.The duration of continuous renal replacement therapy (CRRT),length of hospitalization and incidence of new organ dysfunction were compared between the two groups.Results A total of 105 HLSAP patients were included in the study,with 50 in the control group and 55 in the study group.Before treatment,there was no statistically significant difference in coagulation function,lipid levels,plasma specific viscosity and inflammatory factors between the two groups (P>0.05).After treatment,Fib,TC,TG,plasma specific viscosity,WBC,ESR,CRP,AMY and LYP were significantly lower in the study group than in the control group (P<0.05),while TT,APTT and PT were significantly higher than in the control group (P<0.05).The duration of CRRT,hospitalization time and incidence of new organ dysfunction were lower in the study group than in the control group (P<0.05).In terms of adverse reactions,no transfusion adverse reactions and serious complications occurred in both groups during the treatment period.Conclusion LMWH-assisted PE has a better effect in the treatment of HLSAP,which can improve the coagulation function,blood lipid levels and inflammatory factors of HLSAP patients,shorten the hospital stay and the duration of CRRT,and reduce the incidence of new organ dysfunction.
9.Progress in the prevention and treatment of diabetic retinopathy based on retinal neuroglial vascular unit injury
Mengyang JIANG ; Zhilin LI ; Hongyue WU ; Xiaohui YUAN ; Junguo DUAN
Recent Advances in Ophthalmology 2024;44(12):995-998,1004
Diabetic retinopathy(DR)is a common ocular chronic microvascular complication of diabetes mellitus and is the leading blinding fundus disease in people over 40 years of age.Current studies have shown that neuroglial vascular u-nit(NGVU)injury causes a variety of characteristic fundus changes in DR patients,including exudation,cotton wool spots,microangioma,bleeding,and neovascularization.Recent studies have confirmed that retinal NGVU injury in DR pa-tients occurs before retinal microangiopathy and is closely related to impaired visual function,so NGVU is expected to be a potential therapeutic target for the prevention and treatment of early DR in the future.In this paper,the research progress on the relationship between NGVU and DR treatment is reviewed,intending to provide new research directions for the pre-vention and intervention of early DR progression.
10.Network pharmacology and molecular docking reveal the mechanism of resveratrol in oral squamous cell car-cinoma treatment
Hongjun CHEN ; Qi LEI ; Zhilin WANG ; Xiaowu ZHONG ; Ya QIU ; Lihua LI
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):178-187
Objective To explore the molecular mechanism of resveratrol(RES)in the treatment of oral squamous cell carcinoma(OSCC)through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.Methods The Swiss Target Prediction(http://www.swisstargetprediction.ch),SEA(http://sea.bkslab.org)database,and Pharm map-per database(http://lilab-ecust.cn)were used to retrieve RES-related targets,and the DISGENET(www.disgenet.org),OMIM(https://omim.org)and GeneCards(https://www.genecards.org)databases were used to screen OSCC disease tar-gets.The intersection of drugs and disease targets was determined,and Cytoscape 3.7.2 software was used to construct a"drug-diseasetarget pathway"network.The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING)data-base was used to construct a target protein interaction network,and the DAVID database was used for enrichment analy-sis of key proteins.Finally,molecular docking validation of key proteins was performed using AutoDock and PyMOL.The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC;western blot was used to determine the effect of resveratrol at different concentrations(50,100)μmol/L on the expression of Src tyrosine kinase(SRC),epidermal growth factor receptor(EGFR),estrogen re-ceptor gene 1(ESR1),and phosphatidylinositol 3 kinase/protein kinase B(PI3K/AKT)signaling pathway proteins in OSCC HSC-3 cells.Results A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified.A total of 116 potential common targets were obtained by intersecting drugs with disease targets.These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation,peptide tyrosine phosphorylation,trans-membrane receptor protein tyrosine kinase signaling pathway,and positive regulation of RNA polymerase Ⅱ promot-er transcription,and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects.The docking results of resveratrol with OSCC molecules indicated that key targets,such as EGFR,ESR1,and SRC,have good binding activi-ty.The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC,EGFR,ESR1,p-PI3K,and p-AKT in HSC-3 cells in a dose-dependent manner.Conclusion RES can inhibit the expres-sion of its targets EGFR,ESR1,SRC,p-PI3K,and p-AKT in OSCC cells.


Result Analysis
Print
Save
E-mail