1.Prognosis and its influencing factors in patients with non-gastric gastrointestinal stromal tumors at low risk of recurrence: a retrospective multicenter study in China
Linxi YANG ; Weili YANG ; Xin WU ; Peng ZHANG ; Bo ZHANG ; Junjun MA ; Xinhua ZHANG ; Haoran QIAN ; Ye ZHOU ; Tao CHEN ; Hao XU ; Guoli GU ; Zhidong GAO ; Gang ZHAI ; Xiaofeng SUN ; Changqing JING ; Haibo QIU ; Xiaodong GAO ; Hui CAO ; Ming WANG
Chinese Journal of Gastrointestinal Surgery 2024;27(11):1123-1132
Objective:To investigate the prognosis and the factors that influence it in patients with non-gastric gastrointestinal stromal tumors (GISTs) who are at low risk of recurrence.Methods:This was a retrospective cohort study. Clinicopathologic and prognostic data from patients with non-gastric GISTs and at low risk of recurrence (i.e., very low-risk or low-risk according to the 2008 version of the Modified NIH Risk Classification), who attended 18 medical centers in China between January 2000 and June 2023, were collected. We excluded patients with a history of prior malignancy, concurrent primary malignancy, multiple GISTs, and those who had received preoperative imatinib. The study cohort comprised 1,571 patients with GISTs, 370 (23.6%) of whom were at very low-risk and 1,201 (76.4%) at low-risk of recurrence. The cohort included 799 (50.9%) men and 772 (49.1%) women of median age 57 (16–93) years. Patients were followed up to July 2024. The prognosis and its influencing factors were analyzed. Receiver operating characteristic curves for tumor diameter and Ki67 were established, and the sensitivity, specificity, area under the curve (AUC) and optimal cut-off value with 95% confidence intervals were calculated. Propensity score matching was implemented using the 1:1 nearest neighbor matching method with a matching tolerance of 0.02.Results:With a median follow-up of 63 (12–267) months, the 5- and 10-year overall survival (OS) rates of the 1,571 patients were 99.5% and 98.0%, respectively, and the 5- and 10-year disease-free survival (DFS) rates were 96.3% and 94.4%, respectively. During postoperative follow-up, 3.8% (60/1,571) patients had disease recurrence or metastasis, comprising 0.8% (3/370) in the very low-risk group and 4.7% (57/1,201) in the low-risk group. In the low-risk group, recurrence or metastasis occurred in 5.5% (25/457) of patients with duodenal GISTs, 3.9% (25/645) of those with small intestinal GISTs, 9.2% (6/65) of those with rectal GISTs, and 10.0% (1/10) of those with colonic GISTs. Among the 60 patients with metastases, 56.7% (34/60) of the metastases were located in the abdominal cavity, 53.3% (32/60) in the liver, and 3.3% (2/60) in bone. During the follow-up period, 13 patients (0.8%) died of disease. Receiver operating characteristic curves were plotted for tumor diameter and Ki67 and assessed using the Jordon index. This showed that the difference in DFS between the two groups was statistically significant when the cutoff value for tumor diameter was 3.5 cm (AUC 0.731, 95% CI: 0.670–0.793, sensitivity 77.7%, specificity 64.1%). Furthermore, the difference in DFS between the two groups was statistically significant when the cutoff value for Ki67 was 5% (AUC 0.693, 95% CI: 0.624–0.762, sensitivity 60.7%, specificity 65.3%). Multifactorial analysis revealed that tumor diameter ≥3.5 cm, Ki67 ≥5%, and R1 resection were independent risk factors for DFS in patients with non-gastric GISTs at low risk of recurrence (all P<0.05). Furthermore, age >57 years, Ki67 ≥5%, and R1 resection were also independent risk factors for OS in patients with non-gastric GISTs at low risk of recurrence (all P<0.05). We also grouped the patients according to whether they had received postoperative adjuvant treatment with imatinib for 1 or 3 years. This yielded 137 patients in the less than 1-year group, 139 in the 1-year plus group; and 44 in both the less than 3 years and 3-years plus group. After propensity score matching for age, tumor diameter, Ki67, and resection status, the differences in survival between the two groups were not statistically significant (all P>0.05). The 10-year DFS and OS were 87.5% and 95.5%, respectively, in the group treated with imatinib for less than 1 year and 88.5% and 97.8%, respectively, in the group treated for more than 1 year. The 10-year DFS and OS were 89.6% and 92.6%, respectively, in the group treated with imatinib for less than 3 years and 88.0% and 100.0%, respectively, in the group treated with imatinib for more than 3 years. Conclusion:The overall prognosis of primary, non-gastric, low recurrence risk GISTs is relatively favorable; however, recurrences and metastases do occur. Age, tumor diameter, Ki67, and R1 resection may affect the prognosis. For some patients with low risk GISTs, administration of adjuvant therapy with imatinib for an appropriate duration may help prevent recurrence and improve survival.
2.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
3.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
4.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
5.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.
6.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.
7.Changing resistance profiles of Staphylococcus isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yuling XIAO ; Mei KANG ; Yi XIE ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(5):570-580
Objective To investigate the changing distribution and antibiotic resistance profiles of clinical isolates of Staphylococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Staphylococcus according to the unified protocol of CHINET(China Antimicrobial Surveillance Network)using disk diffusion method and commercial automated systems.The CHINET antimicrobial resistance surveillance data from 2015 to 2021 were interpreted according to the 2021 CLSI breakpoints and analyzed using WHONET 5.6.Results During the period from 2015 to 2021,a total of 204,771 nonduplicate strains of Staphylococcus were isolated,including 136,731(66.8%)strains of Staphylococcus aureus and 68,040(33.2%)strains of coagulase-negative Staphylococcus(CNS).The proportions of S.aureus isolates and CNS isolates did not show significant change.S.aureus strains were mainly isolated from respiratory specimens(38.9±5.1)%,wound,pus and secretions(33.6±4.2)%,and blood(11.9±1.5)%.The CNS strains were predominantly isolated from blood(73.6±4.2)%,cerebrospinal fluid(12.1±2.5)%,and pleural effusion and ascites(8.4±2.1)%.S.aureus strains were mainly isolated from the patients in ICU(17.0±7.3)%,outpatient and emergency(11.6±1.7)%,and department of surgery(11.2±0.9)%,whereas CNS strains were primarily isolated from the patients in ICU(32.2±9.7)%,outpatient and emergency(12.8±4.7)%,and department of internal medicine(11.2±1.9)%.The prevalence of methicillin-resistant strains was 32.9%in S.aureus(MRSA)and 74.1%in CNS(MRCNS).Over the 7-year period,the prevalence of MRSA decreased from 42.1%to 29.2%,and the prevalence of MRCNS decreased from 82.1%to 68.2%.MRSA showed higher resistance rates to all the antimicrobial agents tested except trimethoprim-sulfamethoxazole than methicillin-susceptible S.aureus(MSSA).Over the 7-year period,MRSA strains showed decreasing resistance rates to gentamicin,rifampicin,and levofloxacin,MRCNS showed decreasing resistance rates to gentamicin,erythromycin,rifampicin,and trimethoprim-sulfamethoxazole,but increasing resistance rate to levofloxacin.No vancomycin-resistant strains were detected.The prevalence of linezolid-resistant MRCNS increased from 0.2%to 2.3%over the 7-year period.Conclusions Staphylococcus remains the major pathogen among gram-positive bacteria.MRSA and MRCNS were still the principal antibiotic-resistant gram-positive bacteria.No S.aureus isolates were found resistant to vancomycin or linezolid,but linezolid-resistant strains have been detected in MRCNS isolates,which is an issue of concern.
8.Prognosis and its influencing factors in patients with non-gastric gastrointestinal stromal tumors at low risk of recurrence: a retrospective multicenter study in China
Linxi YANG ; Weili YANG ; Xin WU ; Peng ZHANG ; Bo ZHANG ; Junjun MA ; Xinhua ZHANG ; Haoran QIAN ; Ye ZHOU ; Tao CHEN ; Hao XU ; Guoli GU ; Zhidong GAO ; Gang ZHAI ; Xiaofeng SUN ; Changqing JING ; Haibo QIU ; Xiaodong GAO ; Hui CAO ; Ming WANG
Chinese Journal of Gastrointestinal Surgery 2024;27(11):1123-1132
Objective:To investigate the prognosis and the factors that influence it in patients with non-gastric gastrointestinal stromal tumors (GISTs) who are at low risk of recurrence.Methods:This was a retrospective cohort study. Clinicopathologic and prognostic data from patients with non-gastric GISTs and at low risk of recurrence (i.e., very low-risk or low-risk according to the 2008 version of the Modified NIH Risk Classification), who attended 18 medical centers in China between January 2000 and June 2023, were collected. We excluded patients with a history of prior malignancy, concurrent primary malignancy, multiple GISTs, and those who had received preoperative imatinib. The study cohort comprised 1,571 patients with GISTs, 370 (23.6%) of whom were at very low-risk and 1,201 (76.4%) at low-risk of recurrence. The cohort included 799 (50.9%) men and 772 (49.1%) women of median age 57 (16–93) years. Patients were followed up to July 2024. The prognosis and its influencing factors were analyzed. Receiver operating characteristic curves for tumor diameter and Ki67 were established, and the sensitivity, specificity, area under the curve (AUC) and optimal cut-off value with 95% confidence intervals were calculated. Propensity score matching was implemented using the 1:1 nearest neighbor matching method with a matching tolerance of 0.02.Results:With a median follow-up of 63 (12–267) months, the 5- and 10-year overall survival (OS) rates of the 1,571 patients were 99.5% and 98.0%, respectively, and the 5- and 10-year disease-free survival (DFS) rates were 96.3% and 94.4%, respectively. During postoperative follow-up, 3.8% (60/1,571) patients had disease recurrence or metastasis, comprising 0.8% (3/370) in the very low-risk group and 4.7% (57/1,201) in the low-risk group. In the low-risk group, recurrence or metastasis occurred in 5.5% (25/457) of patients with duodenal GISTs, 3.9% (25/645) of those with small intestinal GISTs, 9.2% (6/65) of those with rectal GISTs, and 10.0% (1/10) of those with colonic GISTs. Among the 60 patients with metastases, 56.7% (34/60) of the metastases were located in the abdominal cavity, 53.3% (32/60) in the liver, and 3.3% (2/60) in bone. During the follow-up period, 13 patients (0.8%) died of disease. Receiver operating characteristic curves were plotted for tumor diameter and Ki67 and assessed using the Jordon index. This showed that the difference in DFS between the two groups was statistically significant when the cutoff value for tumor diameter was 3.5 cm (AUC 0.731, 95% CI: 0.670–0.793, sensitivity 77.7%, specificity 64.1%). Furthermore, the difference in DFS between the two groups was statistically significant when the cutoff value for Ki67 was 5% (AUC 0.693, 95% CI: 0.624–0.762, sensitivity 60.7%, specificity 65.3%). Multifactorial analysis revealed that tumor diameter ≥3.5 cm, Ki67 ≥5%, and R1 resection were independent risk factors for DFS in patients with non-gastric GISTs at low risk of recurrence (all P<0.05). Furthermore, age >57 years, Ki67 ≥5%, and R1 resection were also independent risk factors for OS in patients with non-gastric GISTs at low risk of recurrence (all P<0.05). We also grouped the patients according to whether they had received postoperative adjuvant treatment with imatinib for 1 or 3 years. This yielded 137 patients in the less than 1-year group, 139 in the 1-year plus group; and 44 in both the less than 3 years and 3-years plus group. After propensity score matching for age, tumor diameter, Ki67, and resection status, the differences in survival between the two groups were not statistically significant (all P>0.05). The 10-year DFS and OS were 87.5% and 95.5%, respectively, in the group treated with imatinib for less than 1 year and 88.5% and 97.8%, respectively, in the group treated for more than 1 year. The 10-year DFS and OS were 89.6% and 92.6%, respectively, in the group treated with imatinib for less than 3 years and 88.0% and 100.0%, respectively, in the group treated with imatinib for more than 3 years. Conclusion:The overall prognosis of primary, non-gastric, low recurrence risk GISTs is relatively favorable; however, recurrences and metastases do occur. Age, tumor diameter, Ki67, and R1 resection may affect the prognosis. For some patients with low risk GISTs, administration of adjuvant therapy with imatinib for an appropriate duration may help prevent recurrence and improve survival.
9.Advances in surgical strategies for ossification of posterior longitudinal ligament involving the C 2 segment.
Teng LIU ; Guoning GU ; Chenguang ZHAN ; Haishan LI ; Huizhi GUO ; Yongxian LI ; Guoye MO ; Kai YUAN ; Shuncong ZHANG ; Zhidong YANG ; Yongchao TANG
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(6):742-747
OBJECTIVE:
To evaluate the application of surgical strategies for the treatment of cervical ossification of the posterior longitudinal ligament (OPLL) involving the C 2 segment.
METHODS:
The literature about the surgery for cervical OPLL involving C 2 segment was reviewed, and the indications, advantages, and disadvantages of surgery were summarized.
RESULTS:
For cervical OPLL involving the C 2 segments, laminectomy is suitable for patients with OPLL involving multiple segments, often combined with screw fixation, and has the advantages of adequate decompression and restoration of cervical curvature, with the disadvantages of loss of cervical fixed segmental mobility. Canal-expansive laminoplasty is suitable for patients with positive K-line and has the advantages of simple operation and preservation of cervical segmental mobility, and the disadvantages include progression of ossification, axial symptoms, and fracture of the portal axis. Dome-like laminoplasty is suitable for patients without kyphosis/cervical instability and with negative R-line, and can reduce the occurrence of axial symptoms, with the disadvantage of limited decompression. The Shelter technique is suitable for patients with single/double segments and canal encroachment >50% and allows for direct decompression, but is technically demanding and involves risk of dural tear and nerve injury. Double-dome laminoplasty is suitable for patients without kyphosis/cervical instability. Its advantages are the reduction of damage to the cervical semispinal muscles and attachment points and maintenance of cervical curvature, but there is progress in postoperative ossification.
CONCLUSION
OPLL involving the C 2 segment is a complex subtype of cervical OPLL, which is mainly treated through posterior surgery. However, the degree of spinal cord floatation is limited, and with the progress of ossification, the long-term effectiveness is poor. More research is needed to address the etiology of OPLL and to establish a systematic treatment strategy for cervical OPLL involving the C 2 segment.
Humans
;
Longitudinal Ligaments/surgery*
;
Ossification of Posterior Longitudinal Ligament/surgery*
;
Treatment Outcome
;
Osteogenesis
;
Decompression, Surgical/methods*
;
Cervical Vertebrae/surgery*
;
Laminoplasty/methods*
;
Kyphosis/surgery*
;
Retrospective Studies
10.Practice and exploration in the co-building of culture at large shelter hospitals by doctors and patients
Yanmin DING ; Xujing ZHANG ; Feng JING ; Zhitao YANG ; Hanbing SHANG ; Zhidong GU ; Jingsheng LIN ; Ying CHEN ; Yufang BI ; Erzhen CHEN
Chinese Journal of Hospital Administration 2022;38(8):609-612
Hospital culture plays an important role in the orderly operation of large shelter hospitals as well as epidemic prevention and control.From April to May 2022, the shelter hospital of the National Convention and Exhibition Center(Shanghai) had created the large shelter hospital culture co-built by doctors and patients with a greater sense of belonging by taking measures such as joint party building between doctors and patients, giving play to the vanguard force of party members, carrying out various forms of cultural, sports and science popularization activities, encouraging enthusiastic patients to participate in activity planning, focusing on key groups, formulating shelter " residents convention", and so on. These measures ultimately formed cultural adaptation, cultural synchronization and cultural shaping, which were conducive to enhancing the empathy of doctors and patients, improving the effectiveness of medical implementation, and promoting the standardization of shelter management system. This harmonious, warm and autonomous culture co-built by doctors and patients effectively ensures the safe and orderly operation of the shelter hospital, and provides reference for the construction of the cultural system of large shelter hospitals in China.

Result Analysis
Print
Save
E-mail