1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Brain Aperiodic Dynamics
Zhi-Cai HU ; Zhen ZHANG ; Jiang WANG ; Gui-Ping LI ; Shan LIU ; Hai-Tao YU
Progress in Biochemistry and Biophysics 2025;52(1):99-118
Brain’s neural activities encompass both periodic rhythmic oscillations and aperiodic neural fluctuations. Rhythmic oscillations manifest as spectral peaks of neural signals, directly reflecting the synchronized activities of neural populations and closely tied to cognitive and behavioral states. In contrast, aperiodic fluctuations exhibit a power-law decaying spectral trend, revealing the multiscale dynamics of brain neural activity. In recent years, researchers have made notable progress in studying brain aperiodic dynamics. These studies demonstrate that aperiodic activity holds significant physiological relevance, correlating with various physiological states such as external stimuli, drug induction, sleep states, and aging. Aperiodic activity serves as a reflection of the brain’s sensory capacity, consciousness level, and cognitive ability. In clinical research, the aperiodic exponent has emerged as a significant potential biomarker, capable of reflecting the progression and trends of brain diseases while being intricately intertwined with the excitation-inhibition balance of neural system. The physiological mechanisms underlying aperiodic dynamics span multiple neural scales, with activities at the levels of individual neurons, neuronal ensembles, and neural networks collectively influencing the frequency, oscillatory patterns, and spatiotemporal characteristics of aperiodic signals. Aperiodic dynamics currently boasts broad application prospects. It not only provides a novel perspective for investigating brain neural dynamics but also holds immense potential as a neural marker in neuromodulation or brain-computer interface technologies. This paper summarizes methods for extracting characteristic parameters of aperiodic activity, analyzes its physiological relevance and potential as a biomarker in brain diseases, summarizes its physiological mechanisms, and based on these findings, elaborates on the research prospects of aperiodic dynamics.
3.Severity Assessment Parameters and Diagnostic Technologies of Obstructive Sleep Apnea
Zhuo-Zhi FU ; Ya-Cen WU ; Mei-Xi LI ; Ping-Ping YIN ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(1):147-161
Obstructive sleep apnea (OSA) is an increasingly widespread sleep-breathing disordered disease, and is an independent risk factor for many high-risk chronic diseases such as hypertension, coronary heart disease, stroke, arrhythmias and diabetes, which is potentially fatal. The key to the prevention and treatment of OSA is early diagnosis and treatment, so the assessment and diagnostic technologies of OSA have become a research hotspot. This paper reviews the research progresses of severity assessment parameters and diagnostic technologies of OSA, and discusses their future development trends. In terms of severity assessment parameters of OSA, apnea hypopnea index (AHI), as the gold standard, together with the percentage of duration of apnea hypopnea (AH%), lowest oxygen saturation (LSpO2), heart rate variability (HRV), oxygen desaturation index (ODI) and the emerging biomarkers, constitute a multi-dimensional evaluation system. Specifically, the AHI, which measures the frequency of sleep respiratory events per hour, does not fully reflect the patients’ overall sleep quality or the extent of their daytime functional impairments. To address this limitation, the AH%, which measures the proportion of the entire sleep cycle affected by apneas and hypopneas, deepens our understanding of the impact on sleep quality. The LSpO2 plays a critical role in highlighting the potential severe hypoxic episodes during sleep, while the HRV offers a different perspective by analyzing the fluctuations in heart rate thereby revealing the activity of the autonomic nervous system. The ODI provides a direct and objective measure of patients’ nocturnal oxygenation stability by calculating the number of desaturation events per hour, and the biomarkers offers novel insights into the diagnosis and management of OSA, and fosters the development of more precise and tailored OSA therapeutic strategies. In terms of diagnostic techniques of OSA, the standardized questionnaire and Epworth sleepiness scale (ESS) is a simple and effective method for preliminary screening of OSA, and the polysomnography (PSG) which is based on recording multiple physiological signals stands for gold standard, but it has limitations of complex operations, high costs and inconvenience. As a convenient alternative, the home sleep apnea testing (HSAT) allows patients to monitor their sleep with simplified equipment in the comfort of their own homes, and the cardiopulmonary coupling (CPC) offers a minimal version that simply analyzes the electrocardiogram (ECG) signals. As an emerging diagnostic technology of OSA, machine learning (ML) and artificial intelligence (AI) adeptly pinpoint respiratory incidents and expose delicate physiological changes, thus casting new light on the diagnostic approach to OSA. In addition, imaging examination utilizes detailed visual representations of the airway’s structure and assists in recognizing structural abnormalities that may result in obstructed airways, while sound monitoring technology records and analyzes snoring and breathing sounds to detect the condition subtly, and thus further expands our medical diagnostic toolkit. As for the future development directions, it can be predicted that interdisciplinary integrated researches, the construction of personalized diagnosis and treatment models, and the popularization of high-tech in clinical applications will become the development trends in the field of OSA evaluation and diagnosis.
4.Visual feature extraction combining dissolution testing for the study of drug release behavior of gliclazide modified release tablets
Si-yu CHEN ; Ze-ya LI ; Ping LI ; Xin-qing ZHAO ; Tao GONG ; Li DENG ; Zhi-rong ZHANG
Acta Pharmaceutica Sinica 2025;60(1):225-231
Oral solid dosage forms require processes such as disintegration and dissolution to release the drug before it can be absorbed and utilized by the body. In this manuscript, imaging technology was used to continuously visualize and characterize the
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
6.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
7.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
8.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
9.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
10.Effects of Different Modes in Hypoxic Training on Metabolic Improvements in Obese Individuals: a Systematic Review With Meta-analysis on Randomized Controlled Trail
Jie-Ping WANG ; Xiao-Shi LI ; Ru-Wen WANG ; Yi-Yin ZHANG ; Feng-Zhi YU ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1587-1604
This paper aimed to systematically evaluate the effects of hypoxic training at different fraction of inspired oxygen (FiO2) on body composition, glucose metabolism, and lipid metabolism in obese individuals, and to determine the optimal oxygen concentration range to provide scientific evidence for personalized and precise hypoxic exercise prescriptions. A systematic search was conducted in the Cochrane Library, PubMed, Web of Science, Embase, and CNKI databases for randomized controlled trials and pre-post intervention studies published up to March 31, 2025, involving hypoxic training interventions in obese populations. Meta-analysis was performed using RevMan 5.4 software to assess the effects of different fraction of inspired oxygen (FiO2≤14% vs. FiO2>14%) on BMI, body fat percentage, waist circumference, fasting blood glucose, insulin, HOMA-IR, triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), with subgroup analyses based on oxygen concentration. A total of 22 studies involving 292 participants were included. Meta-analysis showed that hypoxic training significantly reduced BMI (mean difference (MD)=-2.29,95%CI: -3.42 to -1.17, P<0.000 1), body fat percentage (MD=-2.32, 95%CI: -3.16 to -1.47, P<0.001), waist circumference (MD=-3.79, 95%CI: -6.73 to -0.85, P=0.01), fasting blood glucose (MD=-3.58, 95%CI: -6.23 to -0.93, P=0.008), insulin (MD=-1.60, 95%CI: -2.98 to -0.22, P=0.02), TG (MD=-0.18, 95%CI: -0.25 to -0.12, P<0.001), and LDL-C (MD=-0.25, 95%CI: -0.39 to -0.11, P=0.000 3). Greater improvements were observed under moderate hypoxic conditions with FiO2>14%. Changes in HOMA-IR (MD=-0.74, 95%CI: -1.52 to 0.04,P=0.06) and HDL-C (MD=-0.09, 95%CI: -0.21 to 0.02, P=0.11) were not statistically significant. Hypoxic training can significantly improve body composition, glucose metabolism, and lipid metabolism indicators in obese individuals, with greater benefits observed under moderate hypoxia (FiO>14%). As a key parameter in hypoxic exercise interventions, the precise setting of oxygen concentration is crucial for optimizing intervention outcomes.

Result Analysis
Print
Save
E-mail