1.Effect of Modified Chaihu Shugansan on CaMKⅡ/CREB Signaling Pathway in Rats with Myocardial Ischemia and Depression
Fen WAN ; Xiaohong LI ; Ying CHEN ; Yangyu PAN ; Yanna LUO ; Fangge LU ; Chuncheng ZHENG ; Pengyun KONG ; Chengxiang WANG ; Liqiang YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):1-11
ObjectiveTo observe the effects of modified Chaihu Shugansan on the calmodulin-dependent protein kinase Ⅱ(CaMKⅡ)/cAMP-response element binding protein (CREB) signaling pathway in the hippocampus and heart tissue of a rat model with myocardial ischemia and depression and explore the mechanism by which this formula prevents and treats coronary heart disease combined with depression. MethodsThe model of myocardial ischemia combined with depression was established by high-fat diet, intraperitoneal injection of isoproterenol (ISO), and chronic unpredictable mild stress (CUMS). A total of 108 SD male rats were randomly divided into normal group, model group, high (23.4 g·kg-1), medium (11.7 g·kg-1), and low (5.85 g·kg-1) dose groups of modified Chaihu Shugansan, CaMKⅡ inhibitor (KN93) group, and KN93 + high, medium, and low dose groups of modified Chaihu Shugansan, with 12 rats in each group. From the first day of modeling to the end of modeling, drugs were administered once a day. In the seventh and eighth weeks, the KN93 group and the KN93 + high, medium, and low dose groups of modified Chaihu Shugansan were intraperitoneally injected with KN93 three times weekly. At the end of the eighth week, behavioral tests including sucrose preference, open field, and elevated plus maze were conducted. Electrocardiogram (ECG) lead Ⅱ changes were observed in each group of rats, and hematoxylin-eosin (HE) staining was performed to observe changes in heart tissue. Serum levels of triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and lactate dehydrogenase (LDH) were measured by using an enzyme-labeled instrument. Creatine kinase (CK) and creatine kinase-MB (CK-MB) were detected by ultraviolet spectrophotometry, while serum monocyte chemoattractant protein-1 (MCP-1) was measured by enzyme-linked immunosorbent assay (ELISA). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect mRNA expression of CaMKⅡ and CREB in hippocampal and heart tissue, and Western blot was performed to assess protein expression of CaMKⅡ, phosphorylated (p)-CaMKⅡ, CREB, and p-CREB. ResultsCompared to the normal group, the model group showed significant reductions in sucrose preference rate, total activity distance in the open field, number of entries into the center area of the open field, and percentage of entries into the open arms of the elevated plus maze (P<0.01). The ECG showed ST-segment elevation, and HE staining showed serious degeneration of myocardial fibers, disordered arrangement, and infiltration of a large number of inflammatory cells. In addition, serum TC and LDL levels increased (P<0.01), and HDL level decreased (P<0.01). CK, CK-MB, LDH, and MCP-1 levels significantly increased (P<0.05, P<0.01). The mRNA expression of CaMKⅡ and CREB and the protein expression of p-CaMKⅡ and p-CREB decreased in the hippocampal tissue (P<0.05, P<0.01), but those increased in the heart tissue (P<0.01). Compared to the model group, the high, medium, and low dose groups of modified Chaihu Shugansan showed improvements in these abnormalities. The KN93 group had reduced sucrose preference, total activity distance in the open field, number of entries into the center area of the open field, and percentage of entries into the open arms of the elevated plus maze (P<0.01), as well as decreased serum CK, CK-MB, LDH, and MCP-1 levels (P<0.05, P<0.01). KN93 also reduced ST-segment elevation, alleviated the degeneration degree of myocardial fibrosis, and lowered inflammatory cell infiltration. The mRNA expression of CaMKⅡ and CREB and the protein expression of p-CaMKⅡ and p-CREB in both the hippocampal and heart tissue were reduced (P<0.05, P<0.01). The KN93 + high, medium, and low dose groups of modified Chaihu Shugansan showed further improvements in these abnormalities compared to the KN93 group. ConclusionThe modified Chaihu Shugansan exerts antidepressant and myocardial protective effects in rats with myocardial ischemia and depression, possibly related to bidirectional regulation of the CaMKⅡ/CREB signaling pathway, with the high-dose modified Chaihu Shugansan showing the best effects.
2.Effect of Exercise on Blood Glucose Metabolism of Type 2 Diabetes Patients in East Asian Population: A Meta-Analysis
Yuxin SUN ; Bingtai HAN ; Xiaoyuan GUO ; Xueqing ZHENG ; Shi CHEN ; Hongbo YANG ; Hui PAN
Medical Journal of Peking Union Medical College Hospital 2025;16(2):492-505
To explore the effects of different exercise prescriptions on glycemic metabolism in East Asian patients with type 2 diabetes mellitus (T2DM) and to compare the differences in the impact of population characteristics and exercise components on glycemic metabolism. A systematic search was conducted in PubMed, Cochrane Library, EmBase, Web of Science, CNKI, and Wanfang Data Knowledge Service Platform to identify relevant studies published from database inception to June 15, 2024, on the effects of exercise on glycemic metabolism in East Asian patients with T2DM. The study type was limited to randomized controlled trials (RCTs), where the intervention group received exercise interventions and the control group did not. Two researchers independently screened the literature based on inclusion and exclusion criteria and extracted relevant data. Publication bias was assessed using Egger's test in Stata 17.0 and funnel plots in RevMan 5.3. Meta-analysis was performed using RevMan 5.3. A total of 21 RCTs involving 1289 participants (675 in the intervention group and 614 in the control group) were included. Publication bias assessment indicated overall good quality of the included studies. The random-effects model showed that exercise interventions significantly reduced fasting blood glucose (MD=-1.31 mg/L, 95% CI: -1.55 to -1.07, Exercise interventions can improve glycemic control and reduce insulin resistance in East Asian patients with T2DM. Aerobic exercise and combined exercise are more effective exercise prescriptions for glycemic management in this population.
3.Applications of Vaterite in Drug Loading and Controlled Release
Xiao-Hui SONG ; Ming-Yu PAN ; Jian-Feng XU ; Zheng-Yu HUANG ; Qing PAN ; Qing-Ning LI
Progress in Biochemistry and Biophysics 2025;52(1):162-181
Currently, the drug delivery system (DDS) based on nanomaterials has become a hot interdisciplinary research topic. One of the core issues is drug loading and controlled release, in which the key lever is carriers. Vaterite, as an inorganic porous nano-material, is one metastable structure of calcium carbonate, full of micro or nano porous. Recently, vaterite has attracted more and more attention, due to its significant advantages, such as rich resources, easy preparations, low cost, simple loading procedures, good biocompatibility and many other good points. Vaterite, gained from suitable preparation strategies, can not only possess the good drug carrying performance, like high loading capacity and stable loading efficiency, but also improve the drug release ability, showing the better drug delivery effects, such as targeting release, pH sensitive release, photothermal controlled release, magnetic assistant release, optothermal controlled release. At the same time, the vaterite carriers, with good safety itself, can protect proteins, enzymes, or other drugs from degradation or inactivation, help imaging or visualization with loading fluorescent drugs in vitro and in vivo, and play synergistic effects with other therapy approaches, like photodynamic therapy, sonodynamic therapy, and thermochemotherapy. Latterly, some renewed reports in drug loading and controlled release have led to their widespread applications in diverse fields, from cell level to clinical studies. This review introduces the basic characteristics of vaterite and briefly summarizes its research history, followed by synthesis strategies. We subsequently highlight recent developments in drug loading and controlled release, with an emphasis on the advantages, quantity capacity, and comparations. Furthermore, new opportunities for using vaterite in cell level and animal level are detailed. Finally, the possible problems and development trends are discussed.
4.Mechanism of Ferroptosis in Cerebral Ischemia-reperfusion and Interventional Mechanism of Huoxue Huayu Jiedu Prescription Based on "Blood Stasis and Toxin" Pathogenesis
Jiayue HAN ; Danyi PAN ; Jiaxuan XIAO ; Yuchen LIU ; Jiyong LIU ; Yidi ZENG ; Jinxia LI ; Caixing ZHENG ; Hua LI ; Wanghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):51-60
ObjectiveTo explore the material basis of the "interaction of blood stasis and toxin" mechanism in cerebral ischemia-reperfusion injury, as well as the protective role of Huoxue Huayu Jiedu prescription (HXHYJDF) against ferroptosis. MethodsSixty SPF-grade male SD rats were randomly divided into six groups: sham group, model group, deferoxamine (DFO) group (100 mg·kg-1), low-dose HXHYJDF group (4.52 g·kg-1), medium-dose HXHYJDF group (9.04 g·kg-1), and high-dose HXHYJDF group (18.07 g·kg-1), with ten rats in each group. Except for the sham group, the other groups were used to replicate the model of focal cerebral ischemia-reperfusion in the middle cerebral artery of rats by the reforming Longa method. Neurological function was assessed at 1st, 3rd, 5th, and 7th days post-reperfusion using the modified neurological severity scores (m-NSS). Brain tissue pathology and the morphology of mitochondria were observed using hematoxylin-eosin (HE) staining and transmission electron microscopy. The contents of malondialdehyde (MDA), glutathione (GSH), divalent iron ions (Fe2+), and reactive oxygen species (ROS) in the ischemic cerebral tissue were detected using enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry and Western blot (WB) were used to detect the expression of iron death marker proteins glutathione peroxidase 4 (GPX4), ferroportin-1 (FPN1), transferrin receptor protein 1 (TfR1), and ferritin mitochondrial (FtMt) in brain tissue. ResultsCompared with the sham group, the mNSS score of the model group was significantly increased (P<0.01). HE staining showed that the number of neurons in the cortex of brain tissue was seriously reduced, and the intercellular space was widened. The nucleus was fragmented, and the cytoplasm was vacuolated. The results of transmission electron microscopy showed that the mitochondria in the cytoplasm contracted and rounded, and the mitochondrial cristae decreased. The matrix was lost and vacuolated, and the density of the mitochondrial bilayer membrane increased. The results of ELISA showed that the content of GSH decreased significantly (P<0.01), and the contents of MDA, Fe2+, and ROS increased significantly (P<0.01). The results of immunohistochemistry and WB showed that the expression of GPX4 and FPN1 proteins was significantly decreased (P<0.01), and the expression of FtMt and TfR1 proteins was significantly increased (P<0.01). Compared with those of the model group, the m-NSS scores of the high-dose and medium-dose HXHYJDF groups began to decrease on the 3rd and 5th days, respectively (P<0.05, P<0.01). The results of HE and transmission electron microscopy showed that the intervention of HXHYJDF improved the pathological changes of neurons and mitochondria. The results of ELISA showed that the content of GSH in the medium-dose and high-dose HXHYJDF groups increased significantly (P<0.01), and the contents of MDA, Fe2+, and ROS decreased significantly (P<0.05, P<0.01). The content of GSH in the low-dose HXHYJDF group increased significantly (P<0.01), and the contents of MDA and ROS decreased significantly (P<0.01). The results of immunohistochemistry showed that the expression of GPX4 and FPN1 in the high-dose HXHYJDF group increased significantly (P<0.01), and the expression of FtMt and TfR1 decreased significantly (P<0.01). The expression of GPX4 and FPN1 in the medium-dose HXHYJDF group increased significantly (P<0.05), and the expression of TfR1 decreased significantly (P<0.01). WB results showed that the expression levels of FPN1 and GPX4 proteins in the high-dose, medium-dose, and low-dose HXHYJDF groups were significantly up-regulated (P<0.01), and the expression levels of FtMt and TfR1 proteins were significantly down-regulated (P<0.01). ConclusionHXHYJDF can significantly improve neurological dysfunction symptoms in rats with cerebral ischemia-reperfusion injury, improve the pathological morphology of the infarcted brain tissue, and protect the brain tissue of rats with cerebral ischemia-reperfusion injury to a certain extent. Neuronal ferroptosis is involved in cerebral ischemia-reperfusion injury, with increased levels of MDA, Fe2+, ROS, and TfR1 and decreased levels of FtMt, FPN1, GPX4, and GSH potentially constituting the material basis of the interaction of blood stasis and toxin mechanism in cerebral ischemia-reperfusion injury. HXHYJDF may exert brain-protective effects by regulating iron metabolism-related proteins, promoting the discharge of free iron, reducing brain iron deposition, alleviating oxidative stress, and inhibiting ferroptosis.
5.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
6.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
7.Genomic characteristics and phylogenetic analyses of enteroaggregative Escherichia coli infection in diarrhea outpatients in Pudong New Area, Shanghai
Qiqi CUI ; Yuchen LU ; Suping WU ; Yinwen ZHANG ; Bing ZHAO ; Lifeng PAN ; Yingjie ZHENG ; Lipeng HAO
Shanghai Journal of Preventive Medicine 2025;37(4):342-349
ObjectiveTo investigate the whole genomic characteristics and phylogenetic relationships of clinical isolates of enteroaggregative Escherichia coli (EAEC) in diarrhea outpatients in Pudong New Area, Shanghai. MethodsBased on the diarrheal disease surveillance network in Pudong New Area, Shanghai, whole-genome sequencing was performed on a total of 55 EAEC strains isolated from fecal samples of the diarrhea outpatients from January 2015 to December 2019. The genome analyses based on raw sequencing data encompassed genome size, coding genes, dispersed repeat sequences, genomic islands, and protein coding regions, and pan-genome analyses were conducted simultaneously. Contigs sequences assays were performed to analyze molecular characteristics including serotypes, antibiotic resistance genes, and virulence factors. The phylogenetic clusters and multilocus sequence typing (MLST) were identified, and a phylogenetic tree was constructed. ResultsEAEC exhibited an open pan-genome. The predominant serotype of EAEC in diarrhea outpatients in Pudong New Area was O130:H27, and the carriage rate of β-lactam resistance genes was the highest (67.27%, 37/55). A total of 29 virulence factors and 106 virulence genes were identified, phylogenic group B1 was the predominant group, and clonal group CC31 was the dominant clonal group. The strain distribution was highly heterogeneous. ConclusionThe genomic characteristics of EAEC displayed significant strain polymorphism. It is necessary to develop effective strategies for differential diagnosis and improve detection capabilities for infection with EAEC of different serotypes and genotypes.
8.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
9.Analysis of prognostic risk factors for chronic active antibody-mediated rejection after kidney transplantation
Yu HUI ; Hao JIANG ; Zheng ZHOU ; Linkun HU ; Liangliang WANG ; Hao PAN ; Xuedong WEI ; Yuhua HUANG ; Jianquan HOU
Organ Transplantation 2025;16(4):565-573
Objective To investigate the independent risk factors affecting the prognosis of chronic active antibody-mediated rejection (caAMR) after kidney transplantation. Methods A retrospective analysis was conducted on 61 patients who underwent renal biopsy and were diagnosed with caAMR. The patients were divided into caAMR group (n=41) and caAMR+TCMR group (n=20) based on the presence or absence of concurrent acute T cell-mediated rejection (TCMR). The patients were followed up for 3 years. The value of 24-hour urinary protein and estimated glomerular filtration rate (eGFR) at the time of biopsy in predicting graft loss was assessed using receiver operating characteristic (ROC) curves. The independent risk factors affecting caAMR prognosis were analyzed using the LASSO-Cox regression model. The correlation between grouping, outcomes, and Banff scores was compared using Spearman rank correlation matrix analysis. Kaplan-Meier analysis was used to evaluate the renal allograft survival rates of each subgroup. Results The 3-year renal allograft survival rates for the caAMR group and the caAMR+TCMR group were 83% and 79%, respectively. The area under the ROC curve (AUC) for predicting 3-year renal allograft loss was 0.83 [95% confidence interval (CI) 0.70-0.97] for eGFR and 0.78 (95% CI 0.61-0.96) for 24-hour urinary protein at the time of biopsy. LASSO-Cox regression analysis and Kaplan-Meier analysis showed that eGFR≤25.23 mL/(min·1.73 m²) and the presence of donor-specific antibody (DSA) against human leukocyte antigen (HLA) class I might be independent risk factors affecting renal allograft prognosis, with hazard ratios of 7.67 (95% CI 2.18-27.02) and 5.13 (95% CI 1.33-19.80), respectively. A strong correlation was found between the Banff chronic lesion indicators of renal interstitial fibrosis and tubular atrophy (P<0.05). Conclusions The presence of HLA class I DSA and eGFR≤25.23 mL/(min·1.73 m²) at the time of biopsy may be independent risk factors affecting the prognosis of caAMR.
10.Correlation between heart rate variability and extracurricular physical exercise of primary and middle school students in Chengdu City
PAN Zhongjin, ZHANG Yihong, HE Zhongtao, LIU Jianyu, ZHENG Xiao, SHAO Ping
Chinese Journal of School Health 2025;46(7):961-964
Objective:
To investigate the impact of extracurricular physical activity on heart rate variability (HRV) among primary and secondary school students in Chengdu City, so ao to provide references for scientific exercise prescription.
Methods:
Using a convenient sampling method, 1 323 primary and secondary students were enrolled from central Chengdu who underwent physical fitness assessments at Sichuan Provincial Institute of Sports Science from September 2020 to January 2022. According to the standards of the National Physical Fitness Monitoring Center, boys and girls were divided into groups with and without extracurricular physical exercise habits. HRV was monitored using the SA-3000P device. Key HRV parameters were evaluated separately by gender, including standard deviation of normal to normal intervals (SDNN), root mean square of successive differences (rMSSD), total power (TP), low frequency power (LF) and high frequency power (HF). Statistical analyses were employed by t-test, Mann-Whitney U-test and Chi square test.
Results:
lgSDNN, lgrMSSD, TP, LF and HF in the group without extracurricular physical exercise habit [boys:(1.67±0.13)ms, (1.59±0.20)ms, (7.34±0.73)ms 2, (6.11±0.74)ms 2, (6.05±0.87)ms 2; girls:(1.67± 0.13)ms , (1.59±0.19)ms, (7.35±0.60)ms 2, (6.06±0.69)ms 2, (6.12±0.87)ms 2] were lower than those in the group with extracurricular physical exercise habit [boys:(1.75±0.13)ms, (1.72±0.18)ms, (7.69±0.62)ms 2, (6.41±0.76)ms 2, (6.44±0.79)ms 2;girls:(1.73±0.13)ms, (1.68±0.20)ms, (7.60±0.65)ms 2, (6.26±0.86)ms 2, (6.36±0.90)ms 2] ( t =-8.24, -8.75, -6.54, -5.35 , -6.33;-5.10,-4.90,-4.47,-2.71,-2.93, all P <0.01). Only the group of boys without extracurricular physical exercise habits showed a decrease in lgLF/HF [0.04(-0.19,0.27)] compared to the group with extracurricular physical exercise habits [ -0.03 (-0.25,0.20)] ( Z=-2.01, P <0.05). When the score classes of autonomic nerve activity, stress index and fatigue index were compared between boys and girls groups without and with extracurricular physical exercise habits, the proportion of boys normal and above scores increased from 79.3%, 84.1%, 71.8% to 91.4%, 95.7%, 87.3%, respectively, and the differences were statistically significant ( χ 2=47.42, 63.66, 38.28); the proportion of girls normal score and above increased from 79.8%, 85.7%, 75.0% to 85.4%, 92.1%, 79.4%, and the differences were statistically significant ( χ 2=48.31, 22.18, 22.22) (all P <0.01).
Conclusion
The primary and secondary school students who have the habit of extracurricular physical exercise have enhanced compliance in indicators related to HRV, showing more complex heart rate variability.


Result Analysis
Print
Save
E-mail