1.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
2.Traditional superior disciplines empower the development of potential or new disciplines
Zuoqi DING ; Zhen TANG ; Jiewen LUO ; Jinnan SUN
Journal of China Pharmaceutical University 2025;56(3):397-404
The scientific evaluation of the construction and development of university disciplines is an important part and a key challenge in China’s “Double First-Class” initiative. Based on the ESI and InCites databases, this study conducted a year-long observation and analysis of the disciplines at universities in Jiangsu Province under the “Double First-Class” framework. The research focused on the development trends of potential and emerging disciplines, while exploring the influence of traditional predominant disciplines on the growth of these emerging fields and the pathways through which such influence might occur. The study aims to provide some reference and insights for the development of disciplines in the universities in Jiangsu. The findings reveal that, overall, the discipline development maturity of the universities is high, with a positive growth trend and significant development potential in certain fields, which are strongly supported by the traditional predominant disciplines. However, an imbalance in the development across various discipline categories has also been observed. Looking ahead, universities are encouraged to capitalize on their unique academic strengths to foster collaborative development, emphasize the growth of social science disciplines, promote interdisciplinary integration, and cultivate high-level talent for society. This approach will better facilitate the establishment of high-level universities and contribute to the realization of the goal of building a strong educational nation.
3.Analysis and prediction of global burden due to cystic echinococcosis from 1990 to 2035
Zhen LAI ; Gang LIU ; Haili ZHAO ; Miaomiao QIU ; Jian CHEN ; En LUO ; Junguo XIN ; Xiaohong YANG
Chinese Journal of Schistosomiasis Control 2025;37(3):255-267
Objective To investigate the trends in the global burden due to cystic echinococcosis from 1990 to 2021, and to predict the global burden of cystic echinococcosis from 2022 to 2035, so as to provide insights into formulation of the cystic echinococcosis control strategy. Methods The global age-standardized prevalence, mortality, disability-adjusted life years (DALYs) rates and their 95% uncertainty intervals (UI) of cystic echinococcosis from 1990 to 2021 were captured from the Global Burden of Disease Study 2021 (GBD 2021) database, and the trends in the global burden of cystic echinococcosis from 1990 to 2021 were analyzed using the Joinpoint regression model. The associations between the global burden of cystic echinococcosis and socio-demographic index (SDI) were examined using a smoothing spline model and frontier analysis, and the global burden of cystic echinococcosis was projected from 2022 to 2035 using the Bayesian age-period-cohort (BAPC) model. Results The global agestandardized prevalence, mortality and DALYs rates of cystic echinococcosis were 7.69/105 [95% UI: (6.27/105, 9.51/105)], 0.02/105 [95% UI: (0.01/105, 0.02/105)], and 1.32/105 [95% UI: (0.99/105, 1.69/105)] in 2021. The global age-standardized prevalence of cystic echinococcosis appeared a tendency towards a rise by 0.14% per year from 1990 to 2021, and the global age-standardized mortality and DALYs rates of cystic echinococcosis appeared a tendency towards a decline by 4.68% and 4.01% per year from 1990 to 2021, respectively. Joinpoint regression analysis showed that global age-standardized prevalence of cystic echinococcosis appeared a tendency towards a decline from 1990 to 2000 [annual percent change (APC) = −0.66%, 95% confidence interval (CI): (−0.70%, −0.61%)] and from 2005 to 2015 [APC = −0.88%, 95% CI: (−0.93%, −0.82%)], and towards a rise from 2000 to 2005 [APC = 3.68%, 95% CI: (3.49%, 3.87%)] and from 2015 to 2021 [APC=0.30%, 95%CI: (0.19%, 0.40%)].Theagestandardized prevalence (r = −0.17, P < 0.05), mortality (r = −0.67, P < 0.05) and DALYs rates of cystic echinococcosis (r = −0.60, P < 0.05) all correlated negatively with SDI across 21 geographical regions from 1990 to 2021, and the age-standardized mortality (r = −0.61, P < 0.05) and DALYs rates (r = −0.44, P < 0.05) both correlated negatively with SDI across 204 countries and territories in 2021. Frontier analysis revealed that the age-standardized DALYs rate of cystic echinococcosis was still not in line with the frontier in some high-SDI countries or territories. In addition, the global age-standardized prevalence was projected with the BAPC model to appear a tendency towards a rise among both men [estimated annual percent change (EAPC) = 0.18%, 95% CI: (0.13%, 0.23%)] and women [EAPC = 0.29%, 95% CI: (0.24%, 0.34%)] from 2022 to 2035, and the global age-standardized mortality [men: EAPC = −4.71%, 95% CI: (−4.71%, −4.37%); women: EAPC = −4.74%, 95% CI: (−4.74%, −4.74%)] and DALYs rates [men: EAPC = −3.35%, 95% CI: (−3.36%, −3.34%); women: EAPC = −3.17%, 95% CI: (−3.18%, −3.16%)] were projected to appear a tendency towards a decline among both men and women. Conclusions The global burden of cystic echinococcosis appeared an overall tendency towards a decline from 1990 to 2021; however, the global prevalence of cystic echinococcosis is projected to appear a tendency towards a rise from 2022 to 2035. Intensified cystic echinococcosis control programmes are recommended.
4.Ameliorative effect and mechanism of Sanwei ganlu on hepatic fibrosis in rats
Xiumei CHEN ; Yingjie WANG ; Chengzhou ZHAO ; Zhen LI ; Wenhuiping ZHANG ; Tangjun LUO ; Xin LIU ; Shengnan SUN
China Pharmacy 2024;35(6):707-711
OBJECTIVE To investigate the ameliorative effects and mechanism of Sanwei ganlu on hepatic fibrosis in rats. METHODS The rats were randomly divided into normal group, model group, silibinin group (positive control, 50 mg/kg), and Sanwei ganlu low-dose, medium-dose, and high-dose groups (80, 250, 800 mg/kg). Except for normal group, hepatic fibrosis rat models were established by intraperitoneal injection of CCl4 in the other groups of rats. Starting from the 6th week of modeling administration, they were given normal saline or corresponding drugs intragastrically at the same time. At the end of the ninth-week experiment, liver and spleen indexes of rats were calculated; the pathological structure and fibrosis changes of liver tissue were observed by HE, Masson and Sirus Red staining. The contents of alanine transaminase (ALT), aspartate transaminase (AST), procollagen type Ⅲ (PC Ⅲ), collagen type Ⅳ (COL-Ⅳ), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and IL-1β in serum, and hyaluronic acid (HA) and laminin (LN) in liver tissue were all detected. RESULTS Compared with the model group, the liver injury and collagen fiber deposition of rats were improved to different extents in Sanwei ganlu groups and silibinin group; the contents of ALT, AST, PC Ⅲ, COL-Ⅳ, IL-6, TNF-α and IL-1β in serum as well as the contents of HA and LN in liver tissue significantly decreased (P<0.05 or P<0.01). CONCLUSIONS Sanwei ganlu can alleviate the progression of hepatic fibrosis in rats, possibly by inhibiting the synthesis of collagen fiber, reducing transaminase content, down-regulating the levels of HA, LN, PC Ⅲ and COL-Ⅳ, and reducing the inflammatory response.
5.Research progress on the characteristics of head injury in children and adolescents
HUANG Da, LUO Weidong, XU Zhen, XIAO Li
Chinese Journal of School Health 2024;45(4):604-608
Abstract
The harm of head injury in skateboarding is more serious. The common injury cause is fall, collision, high speed impact. The primary types of injury include skull fracture, subdural hemorrhage, brain laceration contusion and concussion. Older children and adolescents, males, longboard, inappropriate sports venue are important risk factors for severe traumatic brain injury. Designing special skateboard parks and wearing protective equipment (helmets) can effectively reduce the incidence and severity of head injuries. The occurrence of injury can be reduced by adopting both legislation and education measures.
6.Signal mining and analysis for adverse events of avatrombopag based on FAERS
Rui XIONG ; Jin WANG ; Zhen YANG ; Yanmei LUO ; Hong ZHANG ; Yongtao TONG ; Xiaodan LAI
Journal of Army Medical University 2024;46(4):369-376
Objective To mine the adverse drug events(ADE)signal of avatrombopag,an effective drug for thrombocytopenia treatment,based on real world data in order to provide reference for its clinical safety application.Methods The OpenVigil2.1 pharmacovigilance platform was used to obtain the ADE report data of avatrombopag from May 2018 to March 2023 in the database of FDA adverse event reporting system(FAERS).The ADE signals were classified and described by the system organ class(SOC)and preferred term(PT)of the ADE terminology set in the Medical Dictionary for Regulatory Activities(MedDRA),and reporting odds ratio(ROR)and UK Medicines and Healthcare Products Regulatory Agency(MHRA)comprehensive standard were used to detect the positive ADE signals.Results A total of 1 879 ADE reports related to avatrombopag were obtained,24 SOCs were involved,and 28 positive ADE signals were detected at PT level.Among these signals,the strongest ones were renal vein thrombosis,portal vein thrombosis and graft versus host disease,while the reports accounting for the largest numbers were headache,fatigue and asthenia.There were 8 ADE signals discovered newly,that is,seasonal allergy,back disorder,musculoskeletal discomfort,flatulence,hypersomnia,rash macular,emotional disorder,and rhinorrhoea.Conclusion For clinical use of avatrombopag,clinicians should not only concern the risk of thrombosis,but also pay close attention to ADE signals such as seasonal allergy,back disorder,musculoskeletal discomfort,flatulence,hypersomnia,rash macular,emotional disorder,and rhinorrhoea that are not documented in the instructions.
7.Lanthanide Metal Organic Framework as A New Unlabeled Fluorescence Anisotropy Probe for Detection of Phosphate Ions
Kai MAO ; Xiao-Yan WANG ; Yu-Jie LUO ; Jia-Li XIE ; Tian-Jin XIE ; Yuan-Fang LI ; Cheng-Zhi HUANG ; Shu-Jun ZHEN
Chinese Journal of Analytical Chemistry 2024;52(1):35-44,中插1-中插4
Fluorescence anisotropy(FA)analysis has many advantages such as no requirement of separation,high throughput and real-time detection,and thus has been widely used in many fields,including biochemical analysis,food safety detection,environmental monitoring,etc.However,due to the small volume or mass of the target,its combination with the fluorescence probe cannot produce significant signal change.To solve this issue,researchers often use nanomaterials to enhance the mass or volume of fluorophore to improve the sensitivity.Nevertheless,this FA amplification strategy also has some disadvantages.Firstly,nanomaterials are easy to quench fluorescence.As a result,the FA value is easily influenced by light scattering,which reduces the detection accuracy.Secondly,fluorescent probes in most methods require complex modification steps.Therefore,it is necessary to develop new FA probes that do not require the amplification of volume and mass or modification.As a new kind of nanomaterials,luminescent metal-organic framework(MOF)has a large volume(or mass)and strong fluorescence emission.It does not require additional signal amplification materials.As a consequence,it can be used as a potential FA probe.This study successfully synthesized a lanthanide metal organic framework(Ce-TCPP MOF)using cerium ion(Ce3+)as the central ion and 5,10,15,20-tetra(4-carboxylphenyl)porphyrin(H2TCPP)as the ligand through microwave assisted method,and used it as a novel unmodified FA probe to detect phosphate ions(Pi).In the absence of Pi,Ce-TCPP MOF had a significant FA value(r).After addition of Pi,Pi reacted with Ce3+in MOF and destroyed the structure of MOF into the small pieces,resulting in a decrease in r.The experimental results indicated that with the increase of Pi concentration,the change of the r of Ce-TCPP MOF(Δr)gradually increased.The Δr and Pi concentration showed a good linear relationship within the range of 0.5-3.5 μmol/L(0.016-0.108 mg/L).The limit of detection(LOD,3σ/k)was 0.41 μmol/L.The concentration of Pi in the Jialing River water detected by this method was about 0.078 mg/L,and the Pi value detected by ammonium molybdate spectrophotometry was about 0.080 mg/L.The two detection results were consistent with each other,and the detection results also meet the ClassⅡwater quality standard,proving that this method could be used for the detection of Pi in complex water bodies.
8.Epithelial transformation sequence 2 affecting the in vitro metastatic activity of esophageal squamous carcinoma cells by regulating the expression of p33 inhibitor growth-1
Yang WANG ; Zhen-Hua WU ; Hong-Bo LÜ ; Dong-Bo LUO
Acta Anatomica Sinica 2024;55(2):203-209
Objective To investigate the effects of epithelial transformation sequence 2(ECT2)and p33ING1 on the metastatic activity of esophageal squamous cell carcinoma(ESCC)cells.Methods The expressions of ECT2 and p33ING1 in esophageal squamous cell carcinoma tissues and adjacent tissues were detected by immunohistochemistry and Western blotting.Human esophageal squamous carcinoma cell line KYSE140 cells were divided into 4 groups:blank group,negative control(pcDNA 3.1 NC)group,overexpression group(pcDNA 3.1 ECT2)and inhibited expression group(si ECT2).MTT assay and cell colony formation assay were used to study the proliferation and growth ability of cells,Transwell assay and scratch assay used to study the invasion and migration ability of cells,and flow cytometry used to detect apoptosis and cell cycle,Western blotting used to detect the effect of ECT2 on p33ING1 protein.Results ECT2 expression increased and p33ING1 expression decreased in esophageal squamous cell carcinoma tissues.Overexpression of ECT2 significantly increased the growth,colony formation,migration and invasion abilities of KYSE140 cells,and decreased the apoptosis rate and p33ING1 expression of KYSE140 cells.In addition,inhibition of ECT2 expression could reverse the above changes.Conclusion The high expression of ECT2 can promote the growth and metastasis of esophageal squamous cell carcinoma KYSE140 cells and inhibit their apoptosis.The mechanism may be related to the inhibition of p33ING1 expression by ECT2.
9.Application of CRISPR/Cas System-integrated Paper-based Analytical Devices for Rapid Detection of Foodborne Pathogens
Peng-Ru LI ; Xing SHEN ; Jing-Nan MENG ; Lin LUO ; Juan WANG ; Zhen-Lin XU
Progress in Biochemistry and Biophysics 2024;51(5):1147-1160
Foods can be contaminated with foodborne pathogens through a variety of pathways, including water, air and soil. Food safety events caused by foodborne pathogens show a serious impact on human health. However, due to the diversity of foodborne pathogens and the complexity of food matrices, the rapid detection of foodborne pathogens was difficult. The conventional microbial culture and physiological and biochemical identification can hardly meet the need of rapid detection of foodborne pathogens in the field. It is necessary to develop rapid detection technologies for foodborne pathogens. Clustered regularly interspaced short palindromic repeats (CRISPR) and associated protein (Cas) are an adaptive immune systems of prokaryotes with specific recognition and cleavage of nucleic acid sequences, which shows good potential for development of nucleic acid detection and biosensing in the field. According to different forms of application, paper-based analytical devices can be categorized into test paper, lateral flow assay and microfluidic paper-based chips, etc. As a good simplicity and low-cost analytical testing tools, they show good prospects in the field of rapid testing. Therefore, the rapid and sensitive detection of foodborne pathogens can be realized by combining the efficient recognition ability of CRISPR/Cas system and the simplicity of paper-based analytical devices. In this paper, we briefly introduce an overview of the CRISPR/Cas system for nucleic acid detection, and this section focuses on an overview of the features and principles of the class 2 system, including types II, V and VI, which uses a single effector. The application of CRISPR/Cas system based test paper analysis, lateral flow assay and microfluidic paper-based chips for the detection of foodborne pathogens are highlighted in the paper, and finally the advantages, current challenges and future prospects of CRISPR/Cas system in combination with paper-based analytical devices to establish detection methods are discussed.
10.The Application in The Development of Immunoassay Based on Upconversion Nanomaterials
Hui-Wei HUANG ; Li-Hua LI ; Lin LUO ; Yu-Dong SHEN ; Hong-Tao LEI ; Zhen-Lin XU
Progress in Biochemistry and Biophysics 2024;51(2):355-368
Immunoassays are widely used in medicine, food, environment and other fields due to having the advantages of simpleness, rapidness and accuracy. Combining immunoassays with nanomaterials can improve the performance of immunoassays. Compared with traditional nanomaterials, upconversion nanoparticles (UCNPs) have excellent optical properties such as good photostability, long luminescence lifetime and narrow and tunable emission bands, which can significantly reduce background noise and improve analytical sensitivity when combined with immunoassay. This paper briefly introduces the luminescence mechanism of UCNPs, summarizes the synthesis and surface modification methods of UCNPs. And then 5 UCNPs-based immunoassay techniques, namely, fluorescence resonance energy transfer, inner filter effect, magnetic separation technique, upconversion-linked immunosorbent assay and upconversion immunochromatography, are discussed in detail. These sensing protocols of UCNPs-based immunoassays have been successfully utilized to detect various targets, including small molecules, macromolecules, and pathogens, all of which closely related to food safety, human health, and environmental pollution. Finally, the challenges and prospects of this technique are summarized and prospected. Although the UCNPs immunoassays based on antibodies and antigens have made great progress, most of the research is still in the stage of laboratory, and there is a long way to go to realize its social applications. There is a series of challenges need to be overcome. (1) Designing excellent water soluble and dispersive upconversion nanomaterials is needed. Hydrophilic ligands are bound to smaller upconversion nanoparticles and removing hydrophobic surface ligands are the most widely used methods to improve solubility and dispersity. (2) Multi-detection technology platforms and multi-mode simultaneous detection platforms have great potential, which will improve the efficiency of point of care detection. (3) The researchers also need to focus on some important problems. For examples, the upconversion luminescence efficiency of UCNPs is difficult to maintain, the synthesis method is complex, and the surface modification degree and functionalization are difficult to control.


Result Analysis
Print
Save
E-mail