1.Effects and mechanism of Qiangxin decoction on mitochondrion of rats with chronic heart failure
Meiling MAO ; Jianqi LU ; Zhide ZHU ; Yan PANG ; Liyu XIE ; Jiayong CHEN ; Xinyu WU ; Xiang XIAO ; Junshen LU ; Weiqi SHI
China Pharmacy 2025;36(2):160-165
OBJECTIVE To investigate the effects and potential mechanism of Qiangxin decoction on mitochondrion of rats with chronic heart failure (CHF). METHODS The CHF model was established by ligating the left anterior descending branch of the coronary artery. Modeled rats were divided into model group, Qiangxin decoction low-dose and high-dose groups (12.25, 24.50 g/kg, calculated by crude drug), and chemical medicine group (Sacubitril valsartan sodium tablets, 10.42 mg/kg), with 10 rats in each group; control group was set up without treatment. Each group of rats was orally administered with the corresponding medication or normal saline twice a day for 28 consecutive days. After the last medication, the contents of N-terminal pro-brain natriuretic peptide (NT-proBNP) and adenosine triphosphate (ATP) in serum and phosphatidic acid (PA) and cardiolipin (CL) in myocardial tissue were all detected; the pathological damage and collagen fibrosis of rat myocardial tissue were observed; the apoptosis of myocardial cells was determined; the ultrastructure of myocardial tissue was observed; the protein expressions of mitofusin 1 (Mfn1), Mfn2, optic atrophy protein 1 (OPA1) and dynamin-related protein 1 (Drp1) were all detected in myocardial tissue. RESULTS Compared with control group,the serum content of NT-proBNP, apoptotic rate of myocardial cells, and relative expressions of S-OPA1 and Drp1 proteins were all increased significantly; serum content of ATP,contents of PA and CL, and relative expressions of Mfn1, Mfn2 and L-OPA1 proteins were all significantly reduced (P<0.05). There were abnormal membrane tissue structure in various layers of myocardial tissue, degeneration and necrosis of myocardial cells, and severe fibrosis; the mitochondria were swollen, with reduced or absent cristae, and uneven matrix density. After intervention with Qiangxin decoction, the levels of the aforementioned quantitative indicators in serum and myocardial tissue of rats (excluding CL content in the Qiangxin decoction low- dose group) were significantly reversed (P<0.05); the pathological damage of myocardial tissue had significantly improved, fibrosis had significantly reduced, mitochondrial morphology tended to be normal, cristae had increased, and matrix density was uniform. CONCLUSIONS Qiangxin decoction can regulate myocardial mitochondrial function and structural integrity of CHF rats, thereby improving myocardial energy metabolism and antagonizing myocardial fibrosis, the mechanism of which may be associated with activating PA/Mfn/CL signaling pathway.
2.Effects and mechanism of Qiangxin decoction on mitochondrion of rats with chronic heart failure
Meiling MAO ; Jianqi LU ; Zhide ZHU ; Yan PANG ; Liyu XIE ; Jiayong CHEN ; Xinyu WU ; Xiang XIAO ; Junshen LU ; Weiqi SHI
China Pharmacy 2025;36(2):160-165
OBJECTIVE To investigate the effects and potential mechanism of Qiangxin decoction on mitochondrion of rats with chronic heart failure (CHF). METHODS The CHF model was established by ligating the left anterior descending branch of the coronary artery. Modeled rats were divided into model group, Qiangxin decoction low-dose and high-dose groups (12.25, 24.50 g/kg, calculated by crude drug), and chemical medicine group (Sacubitril valsartan sodium tablets, 10.42 mg/kg), with 10 rats in each group; control group was set up without treatment. Each group of rats was orally administered with the corresponding medication or normal saline twice a day for 28 consecutive days. After the last medication, the contents of N-terminal pro-brain natriuretic peptide (NT-proBNP) and adenosine triphosphate (ATP) in serum and phosphatidic acid (PA) and cardiolipin (CL) in myocardial tissue were all detected; the pathological damage and collagen fibrosis of rat myocardial tissue were observed; the apoptosis of myocardial cells was determined; the ultrastructure of myocardial tissue was observed; the protein expressions of mitofusin 1 (Mfn1), Mfn2, optic atrophy protein 1 (OPA1) and dynamin-related protein 1 (Drp1) were all detected in myocardial tissue. RESULTS Compared with control group,the serum content of NT-proBNP, apoptotic rate of myocardial cells, and relative expressions of S-OPA1 and Drp1 proteins were all increased significantly; serum content of ATP,contents of PA and CL, and relative expressions of Mfn1, Mfn2 and L-OPA1 proteins were all significantly reduced (P<0.05). There were abnormal membrane tissue structure in various layers of myocardial tissue, degeneration and necrosis of myocardial cells, and severe fibrosis; the mitochondria were swollen, with reduced or absent cristae, and uneven matrix density. After intervention with Qiangxin decoction, the levels of the aforementioned quantitative indicators in serum and myocardial tissue of rats (excluding CL content in the Qiangxin decoction low- dose group) were significantly reversed (P<0.05); the pathological damage of myocardial tissue had significantly improved, fibrosis had significantly reduced, mitochondrial morphology tended to be normal, cristae had increased, and matrix density was uniform. CONCLUSIONS Qiangxin decoction can regulate myocardial mitochondrial function and structural integrity of CHF rats, thereby improving myocardial energy metabolism and antagonizing myocardial fibrosis, the mechanism of which may be associated with activating PA/Mfn/CL signaling pathway.
3.Comparison of the in-hospital mortality risk predictive models among patients with ischemic stroke combined by dysphagia based on interpretable machine learning
Yaoyong TAI ; Shengyong WU ; Xiao LUO ; Ronghui ZHU ; Qian HE ; Cheng WU
Shanghai Journal of Preventive Medicine 2025;37(3):199-205
ObjectiveTo predict the in-hospital mortality risk among patients with ischemic stroke combined by dysphagia using interpretable machine learning methods, so as to provide more evidence-based support for the prognosis prediction of patients with ischemic stroke combined by dysphagia. MethodsMedical record of 308 patients diagnosed with ischemic stroke combined by dysphagia in the Medical Information Mart for Intensive Care Ⅳ (MIMIC-Ⅳ) (2.0) in the United States were retrospectively analyzed. Features of the research data were screened based on the least absolute shrinkage and selection operator, and which were randomly divided into a training set and a test set at a ratio of 7∶3. Then ten models, including logistic regression, random forest, K-nearest neighbor, linear discriminant analysis, naive bayes (NB), neural network, quadratic discriminant analysis, recursive partitioning tree, extreme gradient boosting tree, and support vector machine, etc. were constructed. The predictive effect was measured by calculating the area under the curve (AUC) of receiver operating characteristics. In addition, the calibration curve and Brier score were used to evaluate the calibration degree of the model, and the decision curve was drawn to reflect the clinical net benefit. The Shapley additive explanation method was used to analyze the interpretability of the black box model and explore the important decision-making factors. ResultsThe NB model in the test set showed better predictive ability compared with other models (AUC=0.85, 95%CI: 0.83‒0.88). After interpretability analysis, it was found that blood urea nitrogen (BUN), age, sequential organ failure assessment, bicarbonate, chloride, and hypertension were important risk factors for in-hospital mortality in patients with ischemic stroke combined by dysphagia. ConclusionThe comprehensive performance of the NB model is better than that of the other nine models in predicting the risk of in-hospital mortality in patients with ischemic stroke combined by dysphagia. The interpretability of the model can help clinicians better understand the reasons behind the results and take further reasonable intervention measures for risk factors to improve the survival probability of patients.
4.Research progress on influencing factors and assessment methods of pulp vitality
ZHU Xiao ; CHEN Yanqi ; QIAN Linna ; JIANG Dingzhuo ; SHI Ying ; WU Zhifang
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(8):690-698
Healthy dental pulp is essential for preserving teeth and maintaining their normal function. Vital pulp therapy (VPT) is widely used in clinical applications because it aims to preserve vital pulp and enhance the long-term survival of teeth. An accurate diagnosis of pulp vitality is a prerequisite for successful VPT. However, accurately assessing pulp viability remains challenging in clinical practice. Pulp viability is influenced by various factors, including the type of pulp exposure, caries status, periodontitis, trauma, treatment factors, patient age, and individual differences. Assessing pulp viability requires a comprehensive consideration of medical history and clinical manifestations, along with a combination of various auxiliary methods, such as pulp sensibility tests, pulp blood flow tests, imaging techniques and molecular diagnostics. In the future, the technology for assessing pulp vitality should evolve toward chairside, visualization, and precision techniques, to achieve consistency between clinical and histological diagnoses, thereby providing patients with the most effective treatment.
5.Expression of lymphocyte subsets in the bone marrow of patients with acute myeloid leukemia and its influence on prognosis
Jinhong NIE ; Jiebing XIAO ; Yingchun SHAO ; Chenghui LI ; Lu GAO ; Xiao MA ; Xiaojin WU ; Ziling ZHU
Chinese Journal of Blood Transfusion 2025;38(7):902-908
Objective: To explore the correlation between the composition of bone marrow lymphocyte subsets and the clinical attributes observed in de novo AML patients, as well as their influence on prognosis. Methods: A detailed study was carried out on a cohort of 191 de novo acute myeloid leukemia patients who were admitted to our medical center between October 2022 and September 2024. In addition, a group of 24 patients with iron deficiency anemia individuals was carefully chosen as the control cohort. The proportions of lymphocyte subsets within the bone marrow of de novo AML patients were analyzed. Furthermore, an in-depth analysis was performed to investigate the association between the expression levels of these subsets in de novo AML patients and their clinical attributes, as well as their prognostic implications. Results: The proportion of CD19
and CD56
lymphocytes within the bone marrow of de novo AML patients significantly diminished compared to the control cohort (8.5% vs 13.2% P<0.05, and 15.5% vs 18.0%, P<0.05). Conversely, no significant discrepancies were observed in the CD3
, CD3
CD4
, and CD3
CD8
lymphocyte percentages between the AML patients and control group (71.7% vs 72.1%, 32.5% vs 33.7% and 32.8% vs 35.7%, P>0.05). When analyzing the relationships between lymphocyte subsets within the bone marrow of de novo patients and their respective clinical characteristics, patients aged 60 years and above exhibited diminished percentages of CD3
CD8
lymphocytes in the bone marrow compared to their younger counterparts (31.6% vs 34.1%, P<0.05), while the CD56
lymphocyte subsets demonstrated an increased prevalence (17.2% vs 14.4%, P<0.05). Furthermore, patients with leukocytosis (WBC≥100×10
/L) presented lower levels of CD3
and CD3
CD4
lymphocytes in the bone marrow compared with those without it (65.3% vs 72.9% P<0.05, and 28.9% vs 33.2%, P<0.05), respectively. The AML1-ETO fusion gene-positive cohort exhibited a higher prevalence of CD3
CD8
lymphocytes in the bone marrow than in the negative group (38.2% vs 32.3%, P<0.05), whereas the FLT3-ITD mutation-positive group presented a decreased prevalence of CD56
lymphocytes compared with the negative group (12.4% vs 16.8%, P<0.05). In addition, the NPM1 mutation-positive group demonstrated lower levels of CD3
CD8
lymphocytes in the bone marrow than in the negative group (29.1% vs 33.3%, P<0.05). Variables such as tumor protein p53(TP53) mutation positive, the absence of hematopoietic stem cell transplantation, and CD3
CD4
lymphocyte proportions below 25% were identified as independent adverse prognostic indicators for AML patients (P<0.05). Conclusion: The pathogenesis of AML is closely associated with an imbalance in bone marrow lymphocyte subsets. The FLT3-ITD mutation potentially contributes to the dysregulation of CD56
lymphocyte subset expression. The AML1-ETO fusion gene and NPM1 mutation are implicated in the abnormal expression of CD3
CD8
lymphocytes within the bone marrow. Moreover, the percentage of CD3
CD4
lymphocytes in the bone marrow serves as a prognostic factor for de novo AML patients.
6.Expression of lymphocyte subsets in the bone marrow of patients with acute myeloid leukemia and its influence on prognosis
Jinhong NIE ; Jiebing XIAO ; Yingchun SHAO ; Chenghui LI ; Lu GAO ; Xiao MA ; Xiaojin WU ; Ziling ZHU
Chinese Journal of Blood Transfusion 2025;38(7):902-908
Objective: To explore the correlation between the composition of bone marrow lymphocyte subsets and the clinical attributes observed in de novo AML patients, as well as their influence on prognosis. Methods: A detailed study was carried out on a cohort of 191 de novo acute myeloid leukemia patients who were admitted to our medical center between October 2022 and September 2024. In addition, a group of 24 patients with iron deficiency anemia individuals was carefully chosen as the control cohort. The proportions of lymphocyte subsets within the bone marrow of de novo AML patients were analyzed. Furthermore, an in-depth analysis was performed to investigate the association between the expression levels of these subsets in de novo AML patients and their clinical attributes, as well as their prognostic implications. Results: The proportion of CD19
and CD56
lymphocytes within the bone marrow of de novo AML patients significantly diminished compared to the control cohort (8.5% vs 13.2% P<0.05, and 15.5% vs 18.0%, P<0.05). Conversely, no significant discrepancies were observed in the CD3
, CD3
CD4
, and CD3
CD8
lymphocyte percentages between the AML patients and control group (71.7% vs 72.1%, 32.5% vs 33.7% and 32.8% vs 35.7%, P>0.05). When analyzing the relationships between lymphocyte subsets within the bone marrow of de novo patients and their respective clinical characteristics, patients aged 60 years and above exhibited diminished percentages of CD3
CD8
lymphocytes in the bone marrow compared to their younger counterparts (31.6% vs 34.1%, P<0.05), while the CD56
lymphocyte subsets demonstrated an increased prevalence (17.2% vs 14.4%, P<0.05). Furthermore, patients with leukocytosis (WBC≥100×10
/L) presented lower levels of CD3
and CD3
CD4
lymphocytes in the bone marrow compared with those without it (65.3% vs 72.9% P<0.05, and 28.9% vs 33.2%, P<0.05), respectively. The AML1-ETO fusion gene-positive cohort exhibited a higher prevalence of CD3
CD8
lymphocytes in the bone marrow than in the negative group (38.2% vs 32.3%, P<0.05), whereas the FLT3-ITD mutation-positive group presented a decreased prevalence of CD56
lymphocytes compared with the negative group (12.4% vs 16.8%, P<0.05). In addition, the NPM1 mutation-positive group demonstrated lower levels of CD3
CD8
lymphocytes in the bone marrow than in the negative group (29.1% vs 33.3%, P<0.05). Variables such as tumor protein p53(TP53) mutation positive, the absence of hematopoietic stem cell transplantation, and CD3
CD4
lymphocyte proportions below 25% were identified as independent adverse prognostic indicators for AML patients (P<0.05). Conclusion: The pathogenesis of AML is closely associated with an imbalance in bone marrow lymphocyte subsets. The FLT3-ITD mutation potentially contributes to the dysregulation of CD56
lymphocyte subset expression. The AML1-ETO fusion gene and NPM1 mutation are implicated in the abnormal expression of CD3
CD8
lymphocytes within the bone marrow. Moreover, the percentage of CD3
CD4
lymphocytes in the bone marrow serves as a prognostic factor for de novo AML patients.
7.Expert consensus on the positioning of the "Three-in-One" Registration and Evaluation Evidence System and the value of orientation of the "personal experience"
Qi WANG ; Yongyan WANG ; Wei XIAO ; Jinzhou TIAN ; Shilin CHEN ; Liguo ZHU ; Guangrong SUN ; Daning ZHANG ; Daihan ZHOU ; Guoqiang MEI ; Baofan SHEN ; Qingguo WANG ; Xixing WANG ; Zheng NAN ; Mingxiang HAN ; Yue GAO ; Xiaohe XIAO ; Xiaobo SUN ; Kaiwen HU ; Liqun JIA ; Li FENG ; Chengyu WU ; Xia DING
Journal of Beijing University of Traditional Chinese Medicine 2025;48(4):445-450
Traditional Chinese Medicine (TCM), as a treasure of the Chinese nation, plays a significant role in maintaining public health. In 2019, the Central Committee of the Communist Party of China and the State Council proposed for the first time the establishment of a TCM registration and evaluation evidence system that integrates TCM theory, "personal experience" and clinical trials (referred to as the "Three-in-One" System) to promote the inheritance and innovation of TCM. Subsequently, the National Medical Products Administration issued several guiding principles to advance the improvement and implementation of this system. Owing to the complexity of its implementation, there are still differing understandings within the TCM industry regarding the positioning of the "Three-in-One" Registration and Evaluation Evidence System, as well as the connotation and value orientation of the "personal experience." To address this, Academician WANG Qi, President of the TCM Association, China International Exchange and Promotion Association for Medical and Healthcare and TCM master, led a group of academicians, TCM masters, TCM pharmacology experts and clinical TCM experts to convene a "Seminar on Promoting the Implementation of the ′Three-in-One′ Registration and Evaluation Evidence System for Chinese Medicinals." Through extensive discussions, an expert consensus was formed, clarifying the different roles of the TCM theory, "personal experience" and clinical trials within the system. It was further emphasized that the "personal experience" is the core of this system, and its data should be derived from clinical practice scenarios. In the future, the improvement of this system will require collaborative efforts across multiple fields to promote the high-quality development of the Chinese medicinal industry.
8.Study on The Detection Method of Fat Infiltration in Muscle Tissue Based on Phase Angle Electrical Impedance Tomography
Wu-Guang XIAO ; Xiao-Peng ZHU ; Hui FENG ; Bo SUN ; Tong ZHAO ; Jia-Feng YAO
Progress in Biochemistry and Biophysics 2025;52(10):2663-2676
ObjectiveFat infiltration has been shown to be closely related to muscle mass loss and a variety of muscle diseases. This study proposes a method based on phase-angle electrical impedance tomography (ΦEIT) to visualize the electrical characteristic response caused by muscle fat infiltration, aiming to provide a new technical means for early non-invasive detection of muscle mass deterioration. MethodsThis study was divided into two parts. First, a laboratory pork model was constructed to simulate different degrees of fat infiltration by injecting1 ml or 2 ml of emulsified fat solution into different muscle compartments, and the phase angle images were reconstructed using ΦEIT. Second, a human experiment was conducted to recruit healthy subjects (n=8) from two age groups (20-25 years old and 26-30 years old). The fat content percentage ηfat of the left and right legs was measured by bioelectrical impedance analysis (BIA), and the phase angle images of the left and right calves were reconstructed using ΦEIT. The relationship between the global average phase angle ΦM and the spatial average phase angle ΦMi of each muscle compartment and fat infiltration was further analyzed. ResultsIn the laboratory pork model, the grayscale value of the image increased with the increase of ηfat and ΦM showed a downward trend. The results of human experiments showed that at the same fat content percentage, the ΦM of the 26-30-year-old group was about 20%-35% lower than that of the 20-25-year-old group. The fat content percentage was significantly negatively correlated with ΦM. In addition, the M2 (soleus) compartment was most sensitive to fat infiltration, and the spatial average phase angles of the M2 (soleus), M3 (tibialis posterior and flexor digitorum longus), and M4 (tibialis anterior, extensor digitorum longus, and peroneus longus) compartments all showed significant inter-group differences. ConclusionΦEIT imaging can effectively distinguish different degrees of fat infiltration, especially in deep, small or specially located muscles, showing high sensitivity, demonstrating the potential application of this method in local muscle mass monitoring and early non-invasive diagnosis.
9.The Quantitative Analysis of Dynamic Mechanisms Impacting Gastric Cancer Cell Proliferation via Serine/glycine Conversion
Jun-Wu FAN ; Xiao-Mei ZHU ; Zhi-Yuan FAN ; Bing-Ya LIU ; Ping AO ; Yong-Cong CHEN
Progress in Biochemistry and Biophysics 2024;51(3):658-672
ObjectiveGastric cancer (GC) seriously affects human health and life, and research has shown that it is closely related to the serine/glycine metabolism. The proliferation ability of tumor cells is greatly influenced by the metabolism of serine and glycine. The aim of this study was to investigate the molecular mechanism of serine/glycine metabolism can affect the proliferation of gastric cancer cells. MethodsIn this work, a stable metabolic dynamic model of gastric cancer cells was established via a large-scale metabolic network dynamic modeling method in terms of a potential landscape description of stochastic and non-gradient systems. Based on the regulation of the model, a quantitative analysis was conducted to investigate the dynamic mechanism of serine/glycine metabolism affecting the proliferation of gastric cancer cells. We introduced random noise to the kinetic equations of the general metabolic network, and applied stochastic kinetic decomposition to obtain the Lyapunov function of the metabolic network parameter space. A stable metabolic network was achieved by further reducing the change in the Lyapunov function tied to the stochastic fluctuations. ResultsDespite the unavailability of a large number of dynamic parameters, we were able to successfully construct a dynamic model for the metabolic network in gastric cancer cells. When extracellular serine is available, the model preferentially consumes serine. In addition, when the conversion rate of glycine to serine increases, the model significantly upregulates the steady-state fluxes of S-adenosylmethionine (SAM) and S-adenosyl homocysteine (SAH). ConclusionIn this paper, we provide evidence supporting the preferential uptake of serine by gastric cancer cells and the important role of serine/glycine conversion rate in SAM generation, which may affect the proliferation ability of gastric cancer cells by regulating the cellular methylation process. This provides a new idea and direction for targeted cancer therapy based on serine/glycine metabolism.
10.Preparation and in vitro evaluation of hemoglobin-paclitaxel dual loaded liposomes for improving tumor hypoxia resistance
Xunyi YOU ; Kehui ZHU ; Jing XIAO ; Jiakang WU ; Shifan ZHENG ; Along ZHANG ; Rui ZHONG ; Hong WANG ; Ye CAO ; Jiaxin LIU
Chinese Journal of Blood Transfusion 2024;37(3):297-303
【Objective】 To prepare liposomes encapsulate hemoglobin and paclitaxel(LEHP)to improve tumor hypoxia resistance. 【Methods】 LEHP were prepared by thin-film method, and the particle size, Zeta potential and polydispersity were investigated by nanoparticle size analyzer, and encapsulation efficiency was investigated by high performance liquid chromatography, and the interaction between the liposomes and tumor cells was evaluated by in vitro cell experiments. 【Results】 The optimal preparation conditions of LEHP was as follows: total phospholipid 36 mM, DPPC∶Dope∶cholesterol molar ratio 7∶2∶1, paclitaxel 3 mg, hydrated with 3 mg·mL-1 Hb-PBS for 30 min at room temperature; The average particle size was (189.17±8.22) nm, polydispersity was 0.14±0.023, paclitaxel encapsulation efficiency was (58.27±2.55)%, hemoglobin content was (0.63±0.05) mg·mL-1. In vitro cell experiments, the killing effect of LEHP was about 1.5 times that of LEP, about 1.2 times that of LEP, and ROS production was about 1.8 times that of LEP. 【Conclusion】 The preparation conditions of LEHP was optimized, and cell experiments showed that LEHP can promote tumor cell apoptosis by improving hypoxia and increasing ROS production, which is expected to provide a safe and effective new method for drug resistance caused by tumor hypoxia.


Result Analysis
Print
Save
E-mail