1.Mechanism of 1,25(OH)2D3 improving liver inflammation in a rat model of nonalcoholic steatohepatitis induced by choline-deficient L-amino acid-defined diet
Haiyang ZHU ; Jingshu CUI ; Liu YANG ; Mengting ZHOU ; Jian TONG ; Hongmei HAN
Journal of Clinical Hepatology 2025;41(2):254-262
ObjectiveTo investigate the effect of 1,25(OH)2D3 on the level of peroxisome proliferator-activated receptor-γ (PPAR-γ) in the liver, the phenotype of hepatic macrophages, and liver inflammation in a rat model of nonalcoholic steatohepatitis (NASH), as well as the mechanism of 1,25(OH)2D3 improving liver inflammation. MethodsAfter 1 week of adaptive feeding, 24 specific pathogen-free Wistar rats were randomly divided into normal group [choline-supplemented L-amino acid-defined (CSAA) diet], normal+1,25(OH)2D3 group [CSAA diet+1,25(OH)2D3], model group [choline-deficient L-amino acid-defined diet (CDAA) diet], and model+1,25(OH)2D3 group [CDAA diet+1,25(OH)2D3], with 6 rats in each group. The dose of 1,25(OH)2D3 was 5 μg/kg for intraperitoneal injection twice a week for 12 weeks. The serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured, liver histopathology was observed, and SAF score was assessed. M1 hepatic macrophages and M2 hepatic macrophages were measured to analyze in the change in the phenotype of hepatic macrophages, and ELISA was used to measure the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-4 (IL-4), and interleukin-10 (IL-10) in liver tissue, and qPCR was used to measure the mRNA level of PPAR-γ. The two-factor analysis of variance was use for comparison between groups, and the least significant difference t-test was used for further comparison; the Pearson method was used for correlation analysis. ResultsCompared with the normal group, the model rats with CDAA diet-induced NASH had significant increases in the serum levels of AST and ALT (P=0.019 and P<0.001), the SAF score of liver histopathology (P<0.001), the level of M1 hepatic macrophages (P<0.001), and the ratio of M1 and M2 hepatic macrophages (P<0.001), as well as a significant increase in the level of TNF-α (P<0.001) and a significant reduction in the level of IL-4 in liver tissue (P=0.025). The 1,25(OH)2D3 group had significant reductions in the serum levels of ALT (P<0.001), the SAF score of liver histopathology (P<0.001), the level of M1 hepatic macrophages (P<0.001), and the ratio of M1 and M2 hepatic macrophages (P=0.001), the level of IL-1β (P<0.001) and a significant increase in the level of M2 hepatic macrophages (P=0.017), the level of IL-10 (P=0.039), the level of IL-4 (P<0.001), the level of PPAR-γ (P=0.016). There were significant interactions between CDAA diet-induced NASH model and 1,25(OH)2D3 in serum the levels of AST and ALT (P=0.007 and P=0.008), the SAF scores of liver histopathology (P<0.001), the level of M1 hepatic macrophages (P<0.001), the level of M2 hepatic macrophages (P=0.008), the ratio of M1 and M2 of hepatic macrophages (P=0.005), the level of TNF-α (P<0.001), the level of IL-10 (P=0.038), the level of IL-4 (P<0.001) and the level of PPAR-γ (P=0.009). The correlation analysis showed that PPAR-γ was negatively correlated with the ratio of M1 and M2 hepatic macrophages (r=-0.415, P=0.044) and was positively correlated with M2 hepatic macrophages (r=0.435, P=0.033), IL-10 (r=0.433, P=0.035), and IL-4 (r=0.532, P=0.007). ConclusionThis study shows that 1,25(OH)2D3 improves liver inflammation in NASH by activating PPAR-γ to regulate the phenotypic transformation of hepatic macrophages.
2.Clinical practice guidelines for intraoperative cell salvage in patients with malignant tumors
Changtai ZHU ; Ling LI ; Zhiqiang LI ; Xinjian WAN ; Shiyao CHEN ; Jian PAN ; Yi ZHANG ; Xiang REN ; Kun HAN ; Feng ZOU ; Aiqing WEN ; Ruiming RONG ; Rong XIA ; Baohua QIAN ; Xin MA
Chinese Journal of Blood Transfusion 2025;38(2):149-167
Intraoperative cell salvage (IOCS) has been widely applied as an important blood conservation measure in surgical operations. However, there is currently a lack of clinical practice guidelines for the implementation of IOCS in patients with malignant tumors. This report aims to provide clinicians with recommendations on the use of IOCS in patients with malignant tumors based on the review and assessment of the existed evidence. Data were derived from databases such as PubMed, Embase, the Cochrane Library and Wanfang. The guideline development team formulated recommendations based on the quality of evidence, balance of benefits and harms, patient preferences, and health economic assessments. This study constructed seven major clinical questions. The main conclusions of this guideline are as follows: 1) Compared with no perioperative allogeneic blood transfusion (NPABT), perioperative allogeneic blood transfusion (PABT) leads to a more unfavorable prognosis in cancer patients (Recommended); 2) Compared with the transfusion of allogeneic blood or no transfusion, IOCS does not lead to a more unfavorable prognosis in cancer patients (Recommended); 3) The implementation of IOCS in cancer patients is economically feasible (Recommended); 4) Leukocyte depletion filters (LDF) should be used when implementing IOCS in cancer patients (Strongly Recommended); 5) Irradiation treatment of autologous blood to be reinfused can be used when implementing IOCS in cancer patients (Recommended); 6) A careful assessment of the condition of cancer patients (meeting indications and excluding contraindications) should be conducted before implementing IOCS (Strongly Recommended); 7) Informed consent from cancer patients should be obtained when implementing IOCS, with a thorough pre-assessment of the patient's condition and the likelihood of blood loss, adherence to standardized internally audited management procedures, meeting corresponding conditions, and obtaining corresponding qualifications (Recommended). In brief, current evidence indicates that IOCS can be implemented for some malignant tumor patients who need allogeneic blood transfusion after physician full evaluation, and LDF or irradiation should be used during the implementation process.
3.Compound Xishu Granules Inhibit Proliferation of Hepatocellular Carcinoma Cells by Regulating Ferroptosis
Yuan TIAN ; Yuxi WANG ; Zhen LIU ; Yuncheng MA ; Hongyu ZHU ; Xiaozhu WANG ; Qian LI ; Jian GAO ; Weiling WANG ; Wenhui XU ; Ting WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):37-45
ObjectiveTo study the mechanism of compound Xishu granules (CXG) in inhibiting the proliferation of hepatocellular carcinoma cells by regulating ferroptosis. MethodsThe transplanted tumor model of human Huh7 was established with nude mice and the successfully modeled mice were randomized into model, Fufang Banmao (0.21 g·kg-1), low-dose (1.87 g·kg-1) CXG, medium-dose (3.74 g·kg-1) CXG, and high-dose (7.49 g·kg-1) CXG groups. Mice were administrated with drinking water or CXG for 28 days, and the body weight and tumor volume were measured every 4 days. Hematoxylin-eosin staining was employed to observe the histopathological changes of tumors. The cell-counting kit-8 (CCK-8) was used to examine the survival rate of Huh7 cells treated with different concentrations (0, 31.25, 62.5, 125, 250, 500, 1 000 mg·L-1) of CXG for 24 h and 48 h. CA-AM, DCFH-DA, and C11-BODIPY581/591 fluorescent probes were used to determine the intracellular levels of ferrous ion (Fe2+), reactive oxygen species (ROS), and lipid peroxide (LPO), respectively. The colorimetric method was employed to measure the levels of glutathione (GSH) and superoxide dismutase (SOD). Western blot was employed to determine the protein levels of glutathione peroxidase 4 (GPX4), transferrin receptor 1 (TFR1), and ferritin heavy chain 1 (FTH1), respectively. ResultsIn the animal experiment, compared with the model group, the drug treatment groups showed reductions in the tumor volume from day 12 (P<0.01). After treatment, the Fufang Banmao and low-, medium-, and high-dose CXG groups had lower tumor volume, relative tumor volume, and tumor weight than the model group (P<0.05), with tumor inhibition rates of 48.99%, 79.93%, 91.38%, and 97.36%, respectively. Moreover, the CXG groups had lower tumor volume and relative tumor volume (P<0.05 in all the three dose groups) and lower tumor weight (P<0.05 in medium-dose and high-dose groups) than the Fufang Banmao group. Compared with the model group, the drug treatment groups showed reduced number of tumor cells, necrotic foci with karyopyknosis, nuclear fragmentation, and nucleolysis, and the high-dose CXG group showed an increase in the proportion of interstitial fibroblasts. In the cell experiment, compared with the blank group, CXG reduced the survival rate of Huh7 cells in a dose-dependent manner after incubation for 24 h and 48 h (P<0.05). Compared with the blank group, the RSL3 group and the low-, medium-, and high-dose CXG groups showed a decrease in the relative fluorescence intensity of CA-AM and increases in the fluorescence intensity of DCFH-DA and fluorescence ratio of C11-BODIPY581/591, which indicated elevations in the levels of Fe2+ (P<0.01), ROS (P<0.05), and LPO (P<0.01), respectively. Compared with the blank group, the RSL3 and low-, medium-, and high-dose CXG groups showed lowered levels of GSH and SOD (P<0.05). In addition, the RSL3 group and the medium- and high-dose CXG groups showed down-regulated expression of GPX4 and FTH1 (P<0.05), and the low- and high-dose CXG groups presented up-regulated expression of TFR1 (P<0.05). ConclusionCXG suppresses the proliferation of hepatocellular carcinoma cells by inducing ferroptosis via downregulating the GSH-GPX4 signaling axis and increasing intracellular Fe2+and LPO levels.
4.Seasonal distribution characteristics, source analysis and health risk assessment of polycyclic aromatic hydrocarbons in PM2.5 in Lianyungang City in 2019-2023
Shengnan GAO ; Jinkun LI ; Li CHEN ; Zhengdong XYU ; Hongru ZHU ; Jian WANG ; Zhiyang YAO
Journal of Public Health and Preventive Medicine 2025;36(1):65-69
Objective To study the seasonal distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) in PM2.5 in Lianyungang City, and analyze the sources of PAHs pollution, and to evaluate the health risks of PAHs in different seasons. Methods PM2.5 samples were collected regularly from January 2019 to December 2023, and 16 types of PAHs were determined by HPLC. Kruskal-Wallis H test was used to compare the concentrations of PM2.5 and PAHs in different years and seasons. The source of PAHs was analyzed by characteristic ratio and principal component analysis (PCA). Health risks were assessed using the BaP equivalent method and the incremental lifetime cancer risk (ILCR) model. Results The annual exceedance rates of PM2.5 and BaP in Lianyungang showed a decreasing trend from 2019 to 2023. PM2.5, total PAHs and PAHs monomers (except Ace, Flu and Acy) all showed significant seasonal differences, with the highest concentration in winter (P<0.001). The average proportion of 4-ring PAHs was the highest and the average proportion of 2-ring PAHs was the lowest. The proportion of 5-6 ring PAHs was relatively high in winter and spring. PM2.5and PAHs were negatively correlated with temperature, relative humidity and precipitation, and were positively correlated with atmospheric pressure. PM2.5 was negatively correlated with wind speed, while some PAHs monomers were positively correlated with wind speed. The characteristic ratio and PCA results showed that the main sources of PAHs in Lianyungang City were mixed sources of road dust and vehicle emissions, oil pollution sources and biomass combustion sources. The results of ILCR showed that the highest risk was found in adults, with males slightly higher than females. In Lianyungang, the maximum value of ILCR in winter was more than 10-6 in people over 9 years old. Conclusion The main sources of PAHs in PM2.5 in Lianyungang City are mixed sources of road dust and vehicle emissions, oil pollution sources, and biomass combustion sources. Under the current exposure level of PAHs in PM2.5, residents have a certain potential carcinogenic risk.
5.Platelet Metabolomics Analysis in Rats of Coronary Heart Disease with Blood Stasis Syndrome by Overexpression of Fibrinogen
Manli ZHOU ; Jiale ZHU ; Liping WANG ; Weixiong JIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):230-237
ObjectiveTo analyze the metabolomic characteristics of platelets in fibrinogen(FIB) overexpression rats of coronary heart disease with blood stasis syndrome(CHD-BSS), explore potential biomarkers, and investigate the mechanism of FIB overexpression on CHD-BSS. MethodsSD rats were randomly divided into BSS group and BSS+FIB overexpression group(BSS+FIB group), with 10 rats in each group. Both the BSS+FIB group and the BSS group were fed a high-fat diet combined with oral administration of vitamin D3 and subcutaneous injection of isoproterenol, but rats in the BSS+FIB group were overexpressed with FIB during the initial modeling stage by transfection with adeno-associated virus(AAV). The overexpression level of FIB in rat liver and plasma samples was detected by enzyme-linked immunosorbent assay(ELISA) and real-time fluorescence quantitative polymerase chain reaction(Real time PCR), as well as the expression level of liver FIB A(FGA) mRNA. The characteristics of metabolites in rat platelet samples were analyzed by ultra-high performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap-MS), and the differential metabolites between groups were screened by principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), and the enriched pathways were analyzed. The accuracy of potential biomarkers in the diagnosis of CHD-BSS was evaluated by receiver operating characteristic(ROC) curve. The expression of autophagy related proteins phosphorylated adenosine monophosphate(AMP) activated protein kinase(p-AMPK)/AMPK, phosphorylated mammalian target of rapamycin(p-mTOR)/mTOR, microtubule-associated protein 1 light chain 3(LC3) Ⅱ/Ⅰ and p62 in platelets were detected by Western blot. ResultsCompared with the BSS group, the expression levels of FIB in liver and plasma samples of the BSS+FIB group were significantly increased(P<0.05, P<0.01), and the expression level of FIB mRNA in the liver was remarkably increased(P<0.01), indicating successful overexpression of FIB. Platelet metabolomics results showed significant differences in metabolic profiles between the BSS+FIB group and the BSS group, and a total of 25 significantly enriched metabolic pathways and 8 metabolites involved in these metabolic pathways, among which uric acid, guanosine and ribose 1-phosphate levels were up-regulated, while adenosine diphosphate(ADP), AMP, guanosine diphosphate(GDP), adenylosuccinate and norepinephrine levels were down-regulated. The diagnostic ability analysis of differential metabolites showed that all 8 differential metabolites had good diagnostic ability, with an area under the curve(AUC)>0.85. Western blot results showed that compared with the BSS group, the expression levels of p-mTOR/mTOR and p62 proteins in platelets of the BSS+FIB group was significantly reduced(P<0.01), while the expression levels of p-AMPK/AMPK and LC3Ⅱ/Ⅰ proteins were increased, but the difference was not statistically significant. ConclusionOverexpression of FIB can change the metabolic characteristics of CHD-BSS rat model, involving multiple aspects such as vascular endothelial injury, platelet activation and myocardial function damage. Among them, overexpression of FIB may enhance the occurrence of platelet autophagy, thereby inducing platelet activation and promoting thrombus formation.
6.Deep learning for accurate lung artery segmentation with shape-position priors
Chao GUO ; Xuehan GAO ; Qidi HU ; Jian LI ; Haixing ZHU ; Ke ZHAO ; Weipeng LIU ; Shanqing LI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):332-338
Objective To propose a lung artery segmentation method that integrates shape and position prior knowledge, aiming to solve the issues of inaccurate segmentation caused by the high similarity and small size differences between the lung arteries and surrounding tissues in CT images. Methods Based on the three-dimensional U-Net network architecture and relying on the PARSE 2022 database image data, shape and position prior knowledge was introduced to design feature extraction and fusion strategies to enhance the ability of lung artery segmentation. The data of the patients were divided into three groups: a training set, a validation set, and a test set. The performance metrics for evaluating the model included Dice Similarity Coefficient (DSC), sensitivity, accuracy, and Hausdorff distance (HD95). Results The study included lung artery imaging data from 203 patients, including 100 patients in the training set, 30 patients in the validation set, and 73 patients in the test set. Through the backbone network, a rough segmentation of the lung arteries was performed to obtain a complete vascular structure; the branch network integrating shape and position information was used to extract features of small pulmonary arteries, reducing interference from the pulmonary artery trunk and left and right pulmonary arteries. Experimental results showed that the segmentation model based on shape and position prior knowledge had a higher DSC (82.81%±3.20% vs. 80.47%±3.17% vs. 80.36%±3.43%), sensitivity (85.30%±8.04% vs. 80.95%±6.89% vs. 82.82%±7.29%), and accuracy (81.63%±7.53% vs. 81.19%±8.35% vs. 79.36%±8.98%) compared to traditional three-dimensional U-Net and V-Net methods. HD95 could reach (9.52±4.29) mm, which was 6.05 mm shorter than traditional methods, showing excellent performance in segmentation boundaries. Conclusion The lung artery segmentation method based on shape and position prior knowledge can achieve precise segmentation of lung artery vessels and has potential application value in tasks such as bronchoscopy or percutaneous puncture surgery navigation.
7.Research progress of nano drug delivery system based on metal-polyphenol network for the diagnosis and treatment of inflammatory diseases
Meng-jie ZHAO ; Xia-li ZHU ; Yi-jing LI ; Zi-ang WANG ; Yun-long ZHAO ; Gao-jian WEI ; Yu CHEN ; Sheng-nan HUANG
Acta Pharmaceutica Sinica 2025;60(2):323-336
Inflammatory diseases (IDs) are a general term of diseases characterized by chronic inflammation as the primary pathogenetic mechanism, which seriously affect the quality of patient′s life and cause significant social and medical burden. Current drugs for IDs include nonsteroidal anti-inflammatory drugs, corticosteroids, immunomodulators, biologics, and antioxidants, but these drugs may cause gastrointestinal side effects, induce or worsen infections, and cause non-response or intolerance. Given the outstanding performance of metal polyphenol network (MPN) in the fields of drug delivery, biomedical imaging, and catalytic therapy, its application in the diagnosis and treatment of IDs has attracted much attention and significant progress has been made. In this paper, we first provide an overview of the types of IDs and their generating mechanisms, then sort out and summarize the different forms of MPN in recent years, and finally discuss in detail the characteristics of MPN and their latest research progress in the diagnosis and treatment of IDs. This research may provide useful references for scientific research and clinical practice in the related fields.
8.Therapeutic effect of anti-PD-L1&CXCR4 bispecific nanobody combined with gemcitabine in synergy with PBMC on pancreatic cancer treatment
Hai HU ; Shu-yi XU ; Yue-jiang ZHENG ; Jian-wei ZHU ; Ming-yuan WU
Acta Pharmaceutica Sinica 2025;60(2):388-396
Pancreatic cancer is a kind of highly malignant tumor with a low survival rate and poor prognosis. The effectiveness of gemcitabine as a first-line chemotherapy drug is limited; however, it can activate dendritic cells and improve antigen presentation which increase the sensitivity of tumor cell to immunotherapy. Although immunotherapy has made some advancements in cancer treatment, the therapeutic benefit of programmed cell death receptor 1/programmed death receptor-ligand 1 (PD-1/PD-L1) blockade therapy remains relatively low. The chemokine C-X-C chemokine ligand 12 (CXCL12) contributes to an immunosuppressive tumor microenvironment by recruiting immunosuppressive cells. The receptor C-X-C motif chemokine receptor 4 (CXCR4), highly expressed in various tumors including pancreatic cancer, plays a crucial role in tumor development and progression. In this study, the anti-tumor immune response of human peripheral blood mononuclear cell (hPBMC) was enhanced using the combination of BsNb PX4 (anti-PD-L1&CXCR4 bispecific nanobody) and gemcitabine. In a co-culture system of gemcitabine-pretreated hPBMCs with tumor cells, the BsNb PX4 synergized gemcitabine to improve the cytotoxic activity of hPBMCs against tumor cells. Flow cytometry analysis confirmed increased ratio of CD8+ to CD4+ T cells in combination treatment. In NOD/SCID mice bearing pancreatic cancer, the combination treatment exhibited more infiltration of CD8+ T cells into tumor tissues, contributing to an effective anti-tumor response. This study presents potential new therapies for the treatment of pancreatic cancer. Ethical approval was obtained for collection of hPBMC samples from the Local Ethics Committee of Shanghai Jiao Tong University. All animal experiments were approved by the Animal Ethic Committee of Shanghai Jiao Tong University (authorizing number: A2024246).
9.Clinical Safety Monitoring of 3 035 Cases of Juvenile Feilike Mixture After Marketing in Hospital
Jian ZHU ; Zhong WANG ; Jing LIU ; Jun LIU ; Wei YANG ; Yanan YU ; Hongli WU ; Sha ZHOU ; Zhiyu PAN ; Guang WU ; Mengmeng WU ; Zhiwei JING
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):194-200
ObjectiveTo explore the clinical safety of Feilike Mixture (FLK) in the real world. MethodsThe safety of all children who received FLK from 29 institutions in 12 provinces between January 21,2021 and December 25,2021 was evaluated through prospective centralized surveillance and a nested case control study. ResultsA total of 3 035 juveniles were included. There were 29 research centers involved,which are distributed across 12 provinces,including one traditional Chinese medicine (TCM) hospital and 28 general hospitals. The average age among the juveniles was (4.77±3.56) years old,and the average weight was (21.81±12.97) kg. Among them,119 cases (3.92%) of juveniles had a history of allergies. Acute bronchitis was the main diagnosis for juveniles,with 1 656 cases (54.46%). FLK was first used in 2 016 cases (66.43%),and 142 juvenile patients had special dosages,accounting for 4.68%. Among them,92 adverse drug reactions (ADRs) occurred,including 73 cases of gastrointestinal system disorders,10 cases of metabolic and nutritional disorders,eight cases of skin and subcutaneous tissue diseases,two cases of vascular and lymphatic disorders,and one case of systemic diseases and various reactions at the administration site. The manifestations of ADRs were mainly diarrhea,stool discoloration,and vomiting,and no serious ADRs occurred. The results of multi-factor analysis indicated that special dosages (the use of FLK)[odds ratio (OR) of 2.642, 95% confidence interval (CI) of 1.105-6.323],combined administration: spleen aminopeptide (OR of 4.978, 95%CI of 1.200-20.655),and reason for combined administration: anti-infection (OR of 1.814, 95%CI of 1.071-3.075) were the risk factors for ADRs caused by FLK. Conclusion92 ADRs occurred among 3 035 juveniles using FLK. The incidence of ADRs caused by FLK was 3.03%,and the severity was mainly mild or moderate. Generally,the prognosis was favorable after symptomatic treatment such as drug withdrawal or dosage reduction,suggesting that FLK has good clinical safety.
10.Digital-Intellectualized Upgrade and Clinical Application of National Rare Diseases Registry System of China
Jian GUO ; Ye JIN ; Peng LIU ; Dingding ZHANG ; Limeng CHEN ; Yicheng ZHU ; Shuyang ZHANG
JOURNAL OF RARE DISEASES 2025;4(1):54-60
Since its establishment in 2016, the National Rare Diseases Registry System of China (NRDRS) has accumulated valuable case data and bio-specimen for basic and clinical research on rare diseases in China. However, the emerging challenges in clinical diagnosis and treatment of rare diseases make it unable for data and resource platform to fully meet the diversified needs. Under this backdrop, we have developed a protocol to optimize and upgrade the system based on the core functions of the NRDRS platform. The goal is to leverage intelligent digital technologies to transform NRDRS into a new platform integrating multimodal data and auxiliary diagnostic and treatment functions. It is specified as the development and construction of "one platform and four intelligent tools." Currently, we have upgraded and developed NRDRS platform, intelligent tool for genotype-phenotype analysis of rare diseases, AI-assisted diagnostic tool for rare diseases, remote multidisciplinary diagnosis and teaching tool for rare diseases, drug screening and validation tool for rare diseases. The next step will focus on the promotion of the application of these tools in clinical settings in order to address the issue of severe imbalance in the allocation of resources for the diagnosis and treatment of rare diseases. This article provides an overview of the digital and intelligent upgrades of the NRDRS, the trials in applications in clinical settings, and direction in the future.


Result Analysis
Print
Save
E-mail