1.Interpretation of 2024 ESC guidelines for the management of elevated blood pressure and hypertension
Yu CHENG ; Yiheng ZHOU ; Yao LÜ ; ; Dongze LI ; Lidi LIU ; Peng ZHANG ; Rong YANG ; Yu JIA ; Rui ZENG ; Zhi WAN ; Xiaoyang LIAO
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):31-40
The European Society of Cardiology (ESC) released the "2024 ESC guidelines for the management of elevated blood pressure and hypertension" on August 30, 2024. This guideline updates the 2018 "Guidelines for the management of arterial hypertension." One notable update is the introduction of the concept of "elevated blood pressure" (120-139/70-89 mm Hg). Additionally, a new systolic blood pressure target range of 120-129 mm Hg has been proposed for most patients receiving antihypertensive treatment. The guideline also includes numerous additions or revisions in areas such as non-pharmacological interventions and device-based treatments for hypertension. This article interprets the guideline's recommendations on definition and classification of elevated blood pressure and hypertension, and cardiovascular disease risk assessment, diagnosing hypertension and investigating underlying causes, preventing and treating elevated blood pressure and hypertension. We provide a comparison interpretation with the 2018 "Guidelines for the management of arterial hypertension" and the "2017 ACC/AHA guideline on the prevention, detection, evaluation, and management of high blood pressure in adults."
2.Effects of different activators on platelet-rich plasma growth factors
Jianxiang LIU ; Xingxing FENG ; Shuxia WANG ; Rong ZHOU ; Mengxing LYU ; Kexuan QU
Chinese Journal of Tissue Engineering Research 2025;29(10):2067-2073
BACKGROUND:Growth factor is the key effect molecule that plays a role in platelet-rich plasma in clinical treatment.There are differences in the concentration of growth factor after different activators activate platelet-rich plasma,which is an important factor affecting clinical efficacy. OBJECTIVE:To analyze the influence of different activators on the mass concentration of growth factors in platelet-rich plasma. METHODS:Totally 12 healthy volunteers were recruited to collect EDTA-K2 anticoagulant venous blood.Secondary centrifugation was used to prepare platelet-rich plasma.The difference in mass concentrations of growth factors was compared between venous blood and platelet-rich plasma.The platelet-rich plasma was mixed with four activators(normal saline,thrombin,calcium gluconate,calcium gluconate+thrombin)according to the volume ratio of 10:1,and incubated in a constant temperature water bath at 37 °C for 30 minutes.After centrifugation,the supernatant was extracted and the mass concentration of growth factor was detected.The bacterial growth in supernatant was measured by blood agar plate.Pearson correlation was used to analyze the correlation between different activators and the mass concentration of growth factor in platelet-rich plasma,and the correlation between the value of thrombocytometer and the mass concentration of growth factors in platelet-rich plasma. RESULTS AND CONCLUSION:(1)The mass concentrations of platelet-derived growth factor-BB,platelet-derived growth factor-AB,vascular endothelial growth factor,and epidermal growth factor in platelet-rich plasma were 8.7,22.2,2.3,and 2.8 times of those in venous blood,respectively(P<0.05).(2)Compared with normal saline group,the mass concentrations of platelet-derived growth factor BB,platelet-derived growth factor AB,vascular endothelial growth factor,and epidermal growth factor were increased in the thrombin group,calcium gluconate group,and calcium gluconate+thrombin group(P<0.05).The mass concentration of platelet-derived growth factor BB in the thrombin group and calcium gluconate group was higher than that in the calcium gluconate+thrombin group(P<0.05),and the mass concentration of platelet-derived growth factor AB in the thrombin group was higher than that in the calcium gluconate group and calcium gluconate+thrombin group(P<0.05).Epidermal growth factor mass concentration in the thrombin group was lower than that in the calcium gluconate group and calcium gluconate+thrombin group(P<0.05).(3)The results of blood agar plate test showed no bacterial growth in the supernatant of the four groups.(4)Pearson correlation analysis showed that the mass concentration of platelet-derived growth factor BB in platelet-rich plasma was strongly positively correlated with thrombin(r=0.683,P<0.05),and the mass concentration of vascular endothelial growth factor was strongly positively correlated with thrombin,calcium gluconate,calcium gluconate+thrombin stimulant(r=0.730,0.789,0.686,P<0.05).There was no correlation between the value of thrombocytometer and the mass concentration of four kinds of growth factors(P>0.05).(5)The results suggest that different activators have an impact on the concentration of growth factors in platelet-rich plasma.It is suggested to choose different activators to improve clinical efficacy according to different growth factor mass concentrations and treatment needs.
3.Establishment of a method for detecting the potency of recombinant human coagulation factor Ⅶa for injection
Rong WU ; Liping WANG ; Jinye LANG ; Yue ZHU ; Jing ZHOU ; Xun LIU ; Jing NI ; Shunbo ZHOU ; Yaling DING
Chinese Journal of Blood Transfusion 2025;38(3):415-420
[Objective] To establish a method for detecting the potency of recombinant human coagulation factor Ⅶa for injection. [Methods] By adding the sample and factor Ⅶ deficient plasma to the sample cup and activating the reaction with prothrombin time assay reagent (PT reagent), the coagulation time of the sample was determined by the change in magnetic bead swing amplitude in the sample cup. The logarithm of coagulation time was inversely proportional to the logarithm of human factor Ⅶa potency. [Results] Under the experimental conditions, the specificity of the methodology was evaluated through spiked recovery, and the recovery rates ranged from 90.0% to 110.0%. Within the range from 0.125 to 1.000 IU/mL, there was a good linear response between the potency and coagulation time of the standard and sample, with correlation coefficients r>0.99. As for the accuracy and repeatability, the recovery rates of various concentrations detected in the stock solution were 101.0%, 100.0% and 112.0%, respectively, with RSD values of 2.6%, 4.0% and 0.0%, respectively. The recovery rates of various concentrations in finished product testing were 104.0%, 94.7% and 112.0%, respectively, with RSD values of 1.9%, 2.4% and 0.0%, respectively. As for the intermediate precision, the RSD were 4.5% and 3.7%, respectively. After treated with sample diluent, the sample was tested at room temperature for 6 hours and still exhibited relatively stable biological activity. [Conclusion] This detection method is accurate, stable, easy to operate and highly automated, and is suitable for detecting the potency of recombinant human coagulation factor Ⅶa for Injection.
4.Effect of The Hydrophilic Amino Acids on Self-assembly Behavior of Short Bola-like Peptides
Xin-Xin GAO ; Yu HAN ; Yi-Lin ZHOU ; Xi-Ya CHEN ; Yu-Rong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1290-1301
ObjectiveBola-like short peptides exhibit novel self-assembly properties due to the formation of peptide dimers via hydrogen bonding interactions between their C-terminals. In this configuration, hydrophilic amino acids are distributed at both terminals, making these peptides behave similarly to Bola peptides. The electrostatic repulsive interactions arising from the hydrophilic amino acids at each terminal can be neutralized, thereby greatly promoting the lateral association of β-sheets. Consequently, assemblies with significantly larger widths are typically the dominant nanostructures for Bola-like peptides. To investigate the effect of hydrophilic amino acids on the self-assembly behavior of Bola-like peptides, the peptides Ac-RI3-CONH2 and Ac-HI3-CONH2 were designed and synthesized using the Bola-like peptide Ac-KI3-CONH2 as a template. Their self-assembly behavior was systematically examined. MethodsAtomic force microscopy (AFM) and transmission electron microscopy (TEM) were employed to characterize the morphology and size of the assemblies. The secondary structures of the assemblies were analyzed using circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy. Small-angle neutron scattering (SANS) was used to obtain detailed structural information at a short-length scale. Based on these experimental results, the effects of hydrophilic amino acids on the self-assembly behavior of Bola-like short peptides were systematically analyzed, and the underlying formation mechanism was explored. ResultsThe aggregation process primarily involved three steps. First, peptide dimers were formed through hydrogen bonding interactions between their C-terminals. Within these dimers, the hydrophilic amino acids K, R, and H were positioned at both terminals, enabling the peptides to self-assemble in a manner similar to Bola peptides. Next, β-sheets were formed via hydrogen bonding interactions along the peptide backbone. Finally, self-assemblies were generated through the lateral association of β-sheets. The results demonstrated that both Ac-KI3-CONH2 and Ac-RI3-CONH2 could self-assemble into double-layer nanotubes with diameters of approximately 200 nm. These nanotubes were formed by the edge fusion of helical ribbons, which initially emerged from twisted ribbons. Notably, the primary assemblies of these peptides exhibited opposite chirality: nanofibers formed by Ac-KI3-CONH2 displayed left-handed chirality, whereas those formed by Ac-RI3-CONH2 exhibited right-handed chirality. This reversal in torsional direction was primarily attributed to the different abilities of K and R to form hydrogen bonds with water. In contrast, Ac-HI3-CONH2 formed narrower twisted ribbons with a significantly reduced width of approximately 30 nm, which was attributed to the strong steric hindrance caused by the imidazole rings. The multilayer height of these ribbons was mainly due to the unique structure of the imidazole rings, which can function as both hydrogen bond donors and acceptors, thereby promoting aggregate growth in the vertical direction. ConclusionThe final morphology of the self-assemblies resulted from a delicate balance of various non-covalent interactions. By altering the types of hydrophilic amino acid residues in Bola-like short peptides, the relative strength of non-covalent interactions that drive assembly formation can be effectively regulated, allowing precise control over the morphology and chirality of the assemblies. This study provides a simple and effective approach for constructing diverse self-assemblies and lays a theoretical foundation for the development of functional biomaterials.
6.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
8.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
10.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.

Result Analysis
Print
Save
E-mail