1.Mechanism of postoperative abdominal adhesion formation and therapeutic prospect of mesenchymal stem cell exosomes
Xingzhou ZHANG ; Ming WEI ; Guoqiang DONG ; Wei DU ; Yiwen LUO ; Nan ZHANG
Chinese Journal of Tissue Engineering Research 2025;29(1):147-155
BACKGROUND:The formation of postoperative abdominal adhesions is a complicated process,and the prevention of postoperative adhesions is an urgent problem in clinic. OBJECTIVE:To analyze the mechanism of adhesion at cellular and molecular levels,and to provide theoretical basis for the prevention and treatment of adhesion by mesenchymal stem cell exosomes. METHODS:"Abdominal adhesion,pelvic adhesion,postoperative adhesion,epithelial mesenchymal transformation,mesenchymal stem cells,stem cell exosomes,mesenchymal stem cell exosomes"were selected as Chinese and English search terms.We searched PubMed,CNKI,and Chinese biomedical literature and screened relevant articles on postoperative abdominal adhesion and mesenchymal stem cell exosomal intervention published from inception to August 2023.After systematic analysis,54 articles were finally included for the review. RESULTS AND CONCLUSION:(1)Any pathological factors such as peritoneal inflammation,mechanical injury,tissue ischemia,and foreign body implantation cause peritoneal surface injury,resulting in postoperative abdominal adhesion.The formation process of adhesion includes the interaction of peritoneal mesothelial cell repair,inflammatory response,fibrinolytic system,coagulation pathway and other processes,involving a variety of cytokines and signaling pathways.Wnt/β-catenin pathway can induce fibrosis and angiogenesis,and cooperate with transforming growth factor-β/Smads signaling pathway to stimulate fibroblast proliferation and cause peritoneal fibrosis.Meanwhile,nuclear factor-κB signaling pathway up-regulates the expression of cellular inflammatory factors,promotes fibroblast proliferation,and plays a key role in the process of tissue fibrosis.(2)The paracrine function of stem cells is an important direction of molecular intervention in abdominal adhesions based on regenerative medicine.It can participate in a variety of complex cytokines and signaling pathways involved in abdominal adhesions.(3)Compared with traditional methods for treating abdominal adhesions,mesenchymal stem cell exosome has biological activity and is safe to use.Mesenchymal stem cell exosomes without special culture and expansion have lower immunogenicity,longer stability and other advantages,can guide a normal repair and healing through a variety of ways.(4)Mesenchymal stem cell exosome has been proven to be involved in regulating the above processes of adhesion formation in previous studies,showing potential application prospects in clinical studies.However,further clinical studies are needed to explore appropriate treatment options for mesenchymal stem cell exosomes to address the problem of clinical translation.
2.Design of asymmetric prosthesis and mechanical analysis of total knee arthroplasty
Dejun SU ; Wanpeng DONG ; Yuefu DONG ; Jichao ZHANG ; Zhen ZHANG
Chinese Journal of Tissue Engineering Research 2025;29(3):510-516
BACKGROUND:Total knee arthroplasty serves as an effective intervention for the treatment of late-stage knee joint disorders.However,prosthetic liners are prone to wear and failure due to internal stress variations,resulting in limited lifespan and decreased postoperative patient activity.Addressing how to enhance prosthetic design to meet a broader range of patient needs constitutes a significant focus in prosthesis research. OBJECTIVE:Based on the morphological design of the meniscus,we propose an asymmetric design prosthesis and compare it with a symmetric posterior stabilized prosthesis.The stress distribution patterns and variations in the contact area of the liners for both prostheses were analyzed to explore whether the asymmetric prosthesis design offers advantages over the symmetric design. METHODS:Using the finite element method,we simulated the osteotomy and prosthesis assembly in a knee osteoarthritis patient.Two different prostheses(asymmetric design and posterior stabilized)were employed to establish post-total knee arthroplasty knee joint models.Under flexion conditions at 0°,10°,20°,and 30°,we investigated the Mises stress on the femoral and tibial components as well as the liner.Additionally,by comparing the contact area on the inner and outer sides of the liner,we aimed to explore the changes in biomechanics and alterations in motion behavior in the post-total knee arthroplasty knee joint. RESULTS AND CONCLUSION:(1)Throughout the flexion range from 0 to 30 degrees,the Mises stress peak on the liner exhibited a trend of initial decrease followed by an increase,with the stress on the medial side consistently surpassing that on the lateral side.(2)In comparison to the posterior stabilized prosthesis,the asymmetrically designed prosthesis demonstrated smaller stress peaks.At a flexion angle of 30 degrees,the Mises stress peak values of the medial and lateral parts of the asymmetric prosthesis were 15.81 MPa and 11.95 MPa,and those of the posterior stabilization prosthesis were 16.70 MPa and 13.76 MPa.The difference of Mises stress on the medial part was 5.33%,and the difference of Mises stress on the lateral part was 13.15%.Comparing the peak Mises stress on the femoral and tibial components,the asymmetric component was always lower than the posterior stable component during knee flexion.(3)In the upright position at 0 degrees,the medial contact area of the posterior stabilization prosthesis was 17.96 mm2,and the lateral contact area was 34.10 mm2.The contact area on the inner and outer sides of the asymmetric design prosthesis liner was 105.47 mm2 and 107.80 mm2,respectively,indicating a larger contact area with a smaller difference between the inner and outer sides.(4)These results suggest that the biomechanical performance of the asymmetric prosthesis is superior,contributing to the maintenance of knee joint stability and improved joint mobility.This design,to a certain extent,mimics the rotational motion mechanism of the knee joint about the medial condyle as an axis,making it a more effective choice for knee joint prosthesis selection.
3.Effects of polylactic acid-glycolic acid copolymer/lysine-grafted graphene oxide nanoparticle composite scaffolds on osteogenic differentiation of MC3T3 cells
Shuangqi YU ; Fan DING ; Song WAN ; Wei CHEN ; Xuejun ZHANG ; Dong CHEN ; Qiang LI ; Zuoli LIN
Chinese Journal of Tissue Engineering Research 2025;29(4):707-712
BACKGROUND:How to effectively promote bone regeneration and bone reconstruction after bone injury has always been a key issue in clinical bone repair research.The use of biological and degradable materials loaded with bioactive factors to treat bone defects has excellent application prospects in bone repair. OBJECTIVE:To investigate the effect of polylactic acid-glycolic acid copolymer(PLGA)composite scaffold modified by lysine-grafted graphene oxide nanoparticles(LGA-g-GO)on osteogenic differentiation and new bone formation. METHODS:PLGA was dissolved in dichloromethane and PLGA scaffold was prepared by solvent evaporation method.PLGA/GO composite scaffolds were prepared by dispersing graphene oxide uniformly in PLGA solution.LGA-g-GO nanoparticles were prepared by chemical grafting method,and the PLGA/LGA-g-GO composite scaffolds were constructed by blending LGA-g-GO nanoparticles at different mass ratios(1%,2%,and 3%)with PLGA.The micromorphology,hydrophilicity,and protein adsorption capacity of scaffolds of five groups were characterized.MC3T3 cells were inoculated on the surface of scaffolds of five groups to detect cell proliferation and osteogenic differentiation. RESULTS AND CONCLUSION:(1)The surface of PLGA scaffolds was smooth and flat under scanning electron microscope,while the surface of the other four scaffolds was rough.The surface roughness of the composite scaffolds increased with the increase of the addition of LGA-g-GO nanoparticles.The water contact angle of PLGA/LGA-g-GO(3%)composite scaffolds was lower than that of the other four groups(P<0.05).The protein adsorption capacity of PLGA/LGA-g-GO(1%,2%,and 3%)composite scaffolds was stronger than PLGA and PLGA/GO scaffolds(P<0.05).(2)CCK-8 assay showed that PLGA/LGA-g-GO(2%,3%)composite scaffold could promote the proliferation of MC3T3 cells.Alkaline phosphatase staining and alizarin red staining showed that the cell alkaline phosphatase activity in PLGA/LGA-g-GO(2%,3%)group was higher than that in the other three groups(P<0.05).The calcium deposition in the PLGA/GO and PLGA/LGA-g-GO(1%,2%,and 3%)groups was higher than that in the PLGA group(P<0.05).(3)In summary,PLGA/LGA-g-GO composite scaffold can promote the proliferation and osteogenic differentiation of osteoblasts,and is conducive to bone regeneration and bone reconstruction after bone injury.
4.Tannic acid modified interpenetrating network hydrogel promotes tissue remodeling of ruptured Achilles tendon after surgery
Bo ZHANG ; Zhen ZHANG ; Dong JIANG
Chinese Journal of Tissue Engineering Research 2025;29(4):721-729
BACKGROUND:The regeneration and remodeling of Achilles tendon rupture after surgery are difficulties in clinical treatment.Tissue engineering hydrogels afford the possibility on the healing of postoperative Achilles tendon. OBJECTIVE:To investigate the effect of tannic acid modified interpenetrating network hydrogel on tissue regeneration and remodeling of ruptured Achilles tendon in rats. METHODS:(1)The interpenetrating network hydrogel was prepared under the blue light and the immersion of CaSO4 solution.The micromorphology,mechanical properties,adhesion properties,in vitro drug release properties,and biocompatibility of hydrogels were characterized.(2)Thirty Sprague-Dawley rats were randomly divided into sham operation group,operation group,and hydrogel group,with 10 rats in each group.The animal model of Achilles tendon rupture was established in the latter two groups.In the operation group,the ruptured Achilles tendon was sutured using the modified Kessler method.In the hydrogel group,the ruptured Achilles tendon was repaired by the same method,and the tannic acid modified interpenetrating network hydrogel patch was completely wrapped around the joint of the broken end.Four weeks after the operation,imaging examination,histological evaluation,biomechanical test,and the level test of inflammatory factors were performed. RESULTS AND CONCLUSION:(1)Scanning electron microscope showed that tannic acid modified interpenetrating network hydrogels had porous microstructure with pore size of 3-10 μm,and the hydrogels had good in vitro drug release properties,adhesion strength and tensile strength.CCK-8 assay and live/dead staining showed that the hydrogel had no significant effect on the proliferation activity of rat bone marrow mesenchymal stem cells,and had good biocompatibility.(2)MRI imaging showed that compared with the operation group,the Achilles tendon in the hydrogel group showed uniform low signal,the thickness of the anteroposterior diameter of the Achilles tendon was reduced,and the boundary between the Achilles tendon and the surrounding tissue was more clear,and the performance was more similar to that of the sham operation group.Hematoxylin-eosin staining and Masson staining showed that the tendon fibers in the operation group were arranged in a loose and chaotic manner,with increased cell density and disordered arrangement,accompanied by obvious inflammatory cell infiltration,and intratendinous ossification appeared in some areas.In the hydrogel group,the tendon fibers were arranged in an orderly manner;the cell density was reduced and arranged orderly;the inflammatory cell infiltration was significantly reduced.The tensile strength of Achilles tendon in the operation group was lower than that in the sham operation group(P<0.05).The tensile strength of Achilles tendon in the hydrogel group was higher than that in the operation group(P<0.05).Compared with sham operation group,the mass concentration and mRNA expression of interleukin-1β,interleukin-6,and tumor necrosis factor α in Achilles tendon of rats were increased in the operation group(P<0.05).Compared with the operation group,the level and mRNA expression of three inflammatory factors were decreased in the hydrogel group.(3)It is concluded that tannic acid modified interpenetrating network hydrogel can inhibit the local inflammatory response and promote the tendon remodeling.
5.Synergistic Effect and Mechanism of FUT8 Inhibitor 2FF With DOX for Cancer Treatment
Zhi-Dong XIE ; Xiao-Lian ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):478-486
ObjectiveChemotherapy is one of the important therapeutic approaches for cancer treatment. However, the emergence of multidrug resistance and side effects significantly limit its application. To address these challenges, chemotherapy is often combined with other drugs or therapies. Among the 13 human fucosyltransferases (FUTs) identified, FUT8 (alpha-(1,6)-fucosyltransferase) is the only enzyme responsible for core fucosylation. Core fucosylation plays an important role in cancer occurrence, metastasis and chemotherapy resistance, making the suppression of FUT8 a potential strategy for reversing multidrug resistance. This study aims to evaluate the feasibility of combining the small molecule FUT8 inhibitor 2FF (2-deoxy-2-fluoro-L-fucose) with the clinical chemotherapeutic drug doxorubicin (DOX) for treating malignant tumors. MethodsThe human hepatocellular carcinoma cell line HepG2 and mouse colon cancer cell line CT26 cells were treated with 2FF, DOX or their combination and core fucosylation levels were assessed using Lectin blot. HepG2 and CT26 cells were exposed to 50 μmol/L 2FF for 72 h, followed by treatment with a gradient concentration of DOX for 24 h. Cell viability and IC50 values were determined via the CCK-8 assay. Transwell invasion assays were conducted to evaluate the combined effect of 2FF and DOX on the invasion ability of HepG2 cells. Flow cytometry was performed to analyze the impact of 2FF, DOX and their combination on membrane PD-L1 expression of HepG2 cells. To assess the in vivo effect, 6- to 8-week-old female BALB/c mice (20-25 g), were subcutaneously injected with 1×106 CT26 cells into the right axilla (four groups, six mice in each group). After the average tumor volume reached 100 mm3, mice were treated with DOX, 2FF, their combination, or saline (mock group) every other day. DOX was administrated intraperitoneally (2 mg/kg), 2FF intravenously (5 mg/kg), and the combination group, received the both treatment. Tumor size was measured every other day using a vernier caliper. ResultsThis study demonstrated that DOX upregulates the core fucosylation levels in HepG2 and CT26 cells,while 2FF effectively inhibits this DOX-induced effect. Furthermone, 2FF enhanced the sensitivity of HepG2 and CT26 cells to DOX. The combination of 2FF and DOX synergistically inhibited the invasion ability of HepG2 cells, and enhanced the anti-tumor efficacy of CT26 subcutaneous tumor model in BALB/c mice. However the combination treatment led to weight loss in mice. In addition, DOX increased the cell surface PD-L1 expression in HepG2 cells, which was effectively suppressed by 2FF. ConclusionThe FUT8 inhibitor 2FF effectively suppresses DOX-induced upregulation of core fucosylation and PD-L1 levels in tumor cells, and 2FF synergistically enhances the anticancer efficacy of DOX.
6.Structure, content and data standardization of rehabilitation medical records
Yaru YANG ; Zhuoying QIU ; Di CHEN ; Zhongyan WANG ; Meng ZHANG ; Shiyong WU ; Yaoguang ZHANG ; Xiaoxie LIU ; Yanyan YANG ; Bin ZENG ; Mouwang ZHOU ; Yuxiao XIE ; Guangxu XU ; Jiejiao ZHENG ; Mingsheng ZHANG ; Xiangming YE ; Jian YANG ; Na AN ; Yuanjun DONG ; Xiaojia XIN ; Xiangxia REN ; Ye LIU ; Yifan TIAN
Chinese Journal of Rehabilitation Theory and Practice 2025;31(1):21-32
ObjectiveTo elucidate the critical role of rehabilitation medical records (including electronic records) in rehabilitation medicine's clinical practice and management, comprehensively analyzed the structure, core content and data standards of rehabilitation medical records, to develop a standardized medical record data architecture and core dataset suitable for rehabilitation medicine and to explore the application of rehabilitation data in performance evaluation and payment. MethodsBased on the regulatory documents Basic Specifications for Medical Record Writing and Basic Specifications for Electronic Medical Records (Trial) issued by National Health Commission of China, and referencing the World Health Organization (WHO) Family of International Classifications (WHO-FICs) classifications, International Classification of Diseases (ICD-10/ICD-11), International Classification of Functioning, Disability and Health (ICF), and International Classification of Health Interventions (ICHI Beta-3), this study constructed the data architecture, core content and data standards for rehabilitation medical records. Furthermore, it explored the application of rehabilitation record summary sheets (home page) data in rehabilitation medical statistics and payment methods, including Diagnosis-related Groups (DRG), Diagnosis-Intervention Packet (DIP) and Case Mix Index. ResultsThis study proposed a systematic standard framework for rehabilitation medical records, covering key components such as patient demographics, rehabilitation diagnosis, functional assessment, rehabilitation treatment prescriptions, progress evaluations and discharge summaries. The research analyzed the systematic application methods and data standards of ICD-10/ICD-11, ICF and ICHI Beta-3 in the fields of medical record terminology, coding and assessment. Constructing a standardized data structure and data standards for rehabilitation medical records can significantly improve the quality of data reporting based on the medical record summary sheet, thereby enhancing the quality control of rehabilitation services, effectively supporting the optimization of rehabilitation medical insurance payment mechanisms, and contributing to the establishment of rehabilitation medical performance evaluation and payment based on DRG and DIP. ConclusionStructured rehabilitation records and data standardization are crucial tools for quality control in rehabilitation. Systematically applying the three reference classifications of the WHO-FICs, and aligning with national medical record and electronic health record specifications, facilitate the development of a standardized rehabilitation record architecture and core dataset. Standardizing rehabilitation care pathways based on the ICF methodology, and developing ICF- and ICD-11-based rehabilitation assessment tools, auxiliary diagnostic and therapeutic systems, and supporting terminology and coding systems, can effectively enhance the quality of rehabilitation records and enable interoperability and sharing of rehabilitation data with other medical data, ultimately improving the quality and safety of rehabilitation services.
7.Experience in Staged Differentiation and Treatment of Cirrhotic Ascites Based on the Theory of Tonification and Purging
Haihang DONG ; Yujie CAI ; Huiqin ZHANG ; Yan CHEN ; Yuying TU ; Dongling WANG ; Yinqiang ZHANG
Journal of Traditional Chinese Medicine 2025;66(5):532-536
It is believed that patients with cirrhotic ascites exhibit a pathological mechanism characterized by the decline of healthy qi and the accumulation of pathogenic factors. Clinically, treatment should be based on the theory of tonification and purging, with a staged approach distinguishing between the active phase and the remission phase. The balance between tonification and purging should be adjusted according to the progression of pathogenic and healthy actors. In the acute phase, purging should take precedence over tonification, using purging as a means of tonification to facilitate the flow of water and qi through the triple energizer. The severity of water retention, dampness, blood stasis, and heat should be carefully assessed to ensure thorough elimination of pathogenic factors while avoiding harm to healthy qi. Medication adjustments should be made once the pathogenic factors are significantly weakened. In the remission phase, an integrated approach combining both tonification and purging should be adopted, incorporating purging within tonification to clear residual pathogens and prevent recurrence. Concurrently, proactive treatment of the underlying disease is essential to achieve complete recovery and prevent the recurrence of ascites.
8.Prediction of pN Staging of Papillary Thyroid Carcinoma Using Ultrasonography Radiomics and Deep Neural Networks
Jieli ZHOU ; Linjuan WU ; Pengtian ZHANG ; Yanxia PENG ; Dong HAN
Cancer Research on Prevention and Treatment 2025;52(2):151-155
Objective To assess the accuracy of pN staging prediction in papillary thyroid carcinoma (PTC) using ultrasound radiomics and deep neural networks (DNN). Methods A retrospective analysis was conducted on 375 patients with pathologically confirmed PTC, comprising 261 cases in the training set and 114 in the test set. Staging was categorized as pN0 (no cervical lymph node metastasis), pN1a (central neck lymph node metastasis), and pN1b (lateral neck lymph node metastasis). An ultrasound physician manually segmented the regions of interest (ROIs) for PTC, extracting
9.Role and Mechanism of Cucurbitacin B in Suppressing Proliferation of Breast Cancer 4T1 Cells via Inducing Ferroptosis
Yidan RUAN ; Huizhong ZHANG ; Huating HUANG ; Pingzhi ZHANG ; Aina YAO ; Yongqiang ZHANG ; Xiaohan XU ; Shiman LI ; Jian NI ; Xiaoxu DONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):91-97
ObjectiveTo explore the role of cucurbitacin B (CuB) in inducing ferroptosis in 4T1 cells and its mechanism. MethodsThe effects of CuB(0.2, 0.4, 0.8 μmol·L-1)on the proliferation ability of 4T1 cells in vitro were detected using the methyl thiazolyl tetrazolium (MTT) assay. The clonogenic ability of 4T1 cells was detected by the plate cloning assay, and the levels of lactate dehydrogenase (LDH) in 4T1 cells were detected by the use of a kit. The mitochondrial membrane potential and reactive oxygen species (ROS) levels in 4T1 cells were detected by flow cytometry, and the mitochondrial ultrastructure of 4T1 cells was observed by transmission electron microscopy. The western blot was used to detect the expression of ferroptosis-related protein p53 in 4T1 cells, solute carrier family 7 member 11 (SCL7A11), glutathione peroxidase 4 (GPX4), long-chain acyl-CoA synthetase 4 (ACSL4), transferrin receptor protein 1 (TFR1), and ferritin heavy chain 1 (FTH1). ResultsCompared with that in the blank group, the survival rate of 4T1 cells in CuB groups was significantly decreased (P<0.05), and the number of cell clones in CuB groups was significantly reduced (P<0.01). In addition, compared with that in the blank group, the leakage of LDH in cells in CuB groups was significantly increased (P<0.01), and the mitochondrial membrane potential of cells in CuB groups decreased significantly (P<0.01). Cellular ROS levels were significantly elevated in CuB groups (P<0.01). The mitochondria of cells in CuB groups were obviously wrinkled, and the mitochondrial cristae were reduced or even disappeared. Compared with that in the blank group, the protein expression of p53, ACSL4, and TFR1 were significantly up-regulated in CuB groups (P<0.05), and that of SLC7A11, GPX4, and FTH1 were significantly down-regulated (P<0.05). ConclusionCuB may inhibit SLC7A11 and GPX4 expression by up-regulating the expression of p53, which in turn regulates the p53/SLC7A11/GPX4 signaling pathway axis and accelerates the generation of lipid peroxidation substrate by up-regulating the expression of ACSL4. It up-regulates TFR1 expression to promote cellular uptake of Fe3+ and down-regulates the expression of FTH1 to reduce the ability of iron storage, resulting in an elevated free Fe2+ level. It catalyzes the Fenton reaction, generates excess ROS, imbalances the antioxidant system and iron metabolism, and then induces ferroptosis in 4T1 cells.
10.Role and Mechanism of Cucurbitacin B in Suppressing Proliferation of Breast Cancer 4T1 Cells via Inducing Ferroptosis
Yidan RUAN ; Huizhong ZHANG ; Huating HUANG ; Pingzhi ZHANG ; Aina YAO ; Yongqiang ZHANG ; Xiaohan XU ; Shiman LI ; Jian NI ; Xiaoxu DONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):91-97
ObjectiveTo explore the role of cucurbitacin B (CuB) in inducing ferroptosis in 4T1 cells and its mechanism. MethodsThe effects of CuB(0.2, 0.4, 0.8 μmol·L-1)on the proliferation ability of 4T1 cells in vitro were detected using the methyl thiazolyl tetrazolium (MTT) assay. The clonogenic ability of 4T1 cells was detected by the plate cloning assay, and the levels of lactate dehydrogenase (LDH) in 4T1 cells were detected by the use of a kit. The mitochondrial membrane potential and reactive oxygen species (ROS) levels in 4T1 cells were detected by flow cytometry, and the mitochondrial ultrastructure of 4T1 cells was observed by transmission electron microscopy. The western blot was used to detect the expression of ferroptosis-related protein p53 in 4T1 cells, solute carrier family 7 member 11 (SCL7A11), glutathione peroxidase 4 (GPX4), long-chain acyl-CoA synthetase 4 (ACSL4), transferrin receptor protein 1 (TFR1), and ferritin heavy chain 1 (FTH1). ResultsCompared with that in the blank group, the survival rate of 4T1 cells in CuB groups was significantly decreased (P<0.05), and the number of cell clones in CuB groups was significantly reduced (P<0.01). In addition, compared with that in the blank group, the leakage of LDH in cells in CuB groups was significantly increased (P<0.01), and the mitochondrial membrane potential of cells in CuB groups decreased significantly (P<0.01). Cellular ROS levels were significantly elevated in CuB groups (P<0.01). The mitochondria of cells in CuB groups were obviously wrinkled, and the mitochondrial cristae were reduced or even disappeared. Compared with that in the blank group, the protein expression of p53, ACSL4, and TFR1 were significantly up-regulated in CuB groups (P<0.05), and that of SLC7A11, GPX4, and FTH1 were significantly down-regulated (P<0.05). ConclusionCuB may inhibit SLC7A11 and GPX4 expression by up-regulating the expression of p53, which in turn regulates the p53/SLC7A11/GPX4 signaling pathway axis and accelerates the generation of lipid peroxidation substrate by up-regulating the expression of ACSL4. It up-regulates TFR1 expression to promote cellular uptake of Fe3+ and down-regulates the expression of FTH1 to reduce the ability of iron storage, resulting in an elevated free Fe2+ level. It catalyzes the Fenton reaction, generates excess ROS, imbalances the antioxidant system and iron metabolism, and then induces ferroptosis in 4T1 cells.

Result Analysis
Print
Save
E-mail