1.Inhibitory effect of hydroxy safflower yellow A on neuronal pyroptosis after glucose-oxygen deprivation/reglucose-reoxygenation treatment
Zeqian WANG ; Yanzhe DUAN ; Yige WU ; Dong MA ; Jianjun HUANG ; Yuqing YAN ; Lijuan SONG
Chinese Journal of Tissue Engineering Research 2025;29(19):4044-4051
BACKGROUND:Hydroxy safflower yellow A has anti-ischemia,anti-oxidation,anti-thrombotic and anti-inflammatory effects.Whether it affects neuronal pyroptosis after glucose-oxygen deprivation/reglucose-reoxygenation is still unclear. OBJECTIVE:To investigate the protective effect of hydroxy safflower yellow A on neuronal pyroptosis and its mechanism. METHODS:HT22 cells in logarithmic growth phase were randomly divided into five groups:normal group,model group,hydroxy safflower yellow A group,colivelin group,and colivelin+hydroxy safflower yellow A group.HT22 cells were treated with glucose-oxygen deprivation/reglucose-reoxygenation to establish neuronal pyroptosis model,and then treated with STAT3 agonist Colivelin and hydroxy safflower yellow A.JC-1 probe was employed to assess changes in mitochondrial membrane potential.Reactive oxygen species kit was used to determine the content of reactive oxygen species in cells.GSDMD/TUNEL staining was conducted to observe cell pyroptosis.Immunofluorescence analysis was performed to detect STAT3 and GSDMD protein expression.RT-PCR was utilized for assessing mRNA expression levels of STAT3,NLRP3,and Caspase-1.Western blot assay was utilized to measure the protein expression levels of p-STAT3,NLRP3,GSDMD,Cleaved-caspase-1,and interleukin-1β. RESULTS AND CONCLUSION:(1)Compared with the normal group,the number of pyroptotic cells increased in HT22 cells in the model group along with a significant increase in protein expression levels of p-STAT3,NLRP3,Cleaved-caspase-1,GSDMD,and interleukin-1β.Compared with the model group,the number of pyroptotic cells reduced,and the expression of pyroptosis-related proteins significantly decreased in the hydroxy safflower yellow A group.(2)In comparison with the model group,pyroptosis worsened in the colivelin group where mitochondrial membrane potential decreased along with elevated reactive oxygen species content and increased mRNA expression levels of STAT3,NLRP3,and Caspase-1,as well as increased protein expression levels of p-STAT3,NLRP3,GSDMD,Cleaved-caspase-1,and interleukin-1β.Compared with the Colivelin group,above indexes were improved in the colivelin+hydroxy safflower yellow A group.These results suggest that hydroxy safflower yellow A plays a neuroprotective role through STAT3 signaling pathway to inhibit HT22 pyroptosis after glucose-oxygen deprivation/reglucose-reoxygenation treatment.
2.Concept,Organizational Structure,and Medical Model of the Traditional Chinese Medicine Myocardial Infarction Unit
Jun LI ; Jialiang GAO ; Jie WANG ; Zhenpeng ZHANG ; Xinyuan WU ; Ji WU ; Zicong XIE ; Jingrun CUI ; Haoqiang HE ; Yuqing TAN ; Chunkun YANG
Journal of Traditional Chinese Medicine 2025;66(9):873-877
The traditional Chinese medicine (TCM) myocardial infarction (MI) unit is a standardized, regulated, and continuous integrated care unit guided by TCM theory and built upon existing chest pain centers or emergency care units. This unit emphasizes multidisciplinary collaboration and forms a restructured clinical entity without altering current departmental settings, offering comprehensive diagnostic and therapeutic services with full participation of TCM in the treatment of MI. Its core medical model is patient-centered and disease-focused, providing horizontally integrated TCM-based care across multiple specialties and vertically constructing a full-cycle treatment unit for MI, delivering prevention, treatment, and rehabilitation during the acute, stable, and recovery phases. Additionally, the unit establishes a TCM-featured education and prevention mechanism for MI to guide patients in proactive health management, reduce the incidence of myocardial infarction, and improve quality of life.
3.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
4.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
5.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
6.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
7.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
8.Influencing factors of pulmonary dysfunction among community-based population at high-risk for chronic obstructive pulmonary disease in Putuo District, Shanghai
Rongwei SONG ; Chunxiang WU ; Jie YU ; Yuqing LU ; Fengying ZHANG
Shanghai Journal of Preventive Medicine 2025;37(5):397-402
ObjectiveTo analyze the influencing factors of pulmonary dysfunction among community-based population at high-risk for chronic obstructive pulmonary disease (COPD), and to establish a risk assessment model to provide a reference basis for accelerating the beforehand prevention and control of COPD and promoting the respiratory health of community-based residents. MethodsIndividuals aged >35 years old, with at least one risk factor except age illustrated in the Guidelines for Primary Diagnosis and Treatment of Chronic Obstructive Lung Disease (2018), and participated in the early screening for COPD from July 2022 to December 2023 were selected as the research subjects, and their lung function was assessed by the forceful expiratory volume in the first second after inhalation of bronchodilator (FEV1)/ forced vital capacity (FVC) <70% and/or the ratio of FEV1 to predicted value (FEV1%Pred) <80% as the diagnostic criteria. In addition, risk factors related to pulmonary dysfunction were analyzed for the establishment of risk assessment model. ResultsA total of 823 individuals aged between 35‒76 years were included, among which 298 (36.21%) were diagnosed with pulmonary dysfunction, 167 (20.29%) with COPD, and 131 (15.92%) with preserved ratio but impaired spirometry. Logistic regression analysis revealed that male gender, increasing age, more frequent smoking, insufficient physical activity, recurrent wheezing, the presence of post-exercise wheezing or coughing, insensitive to airborne allergens, and history of chronic bronchitis or bronchial asthma were correlated with pulmonary dysfunction. The incidence rate of pulmonary dysfunction was 1.99 times higher in males than that in females, 1.81 times more common in those aged between 70‒76 years than those aged <60 years, 2.42 times more common in those who smoked 50‒200 pack-years than in those who smoked 0‒14 pack-years, 1.78 times higher in those who underwent physical activity <600 MET‑min·week-1 than in those who underwent physical activity ≥600 MET‑min·week-1, 2.61 times higher in those suffered recurrent wheezing than in those did not, 1.53 times higher in those with symptoms of post-exercise wheezing or coughing than in those without, 1.61 times higher in those insensitive to airborne allergens than those sensitive, 2.02 times higher in patients with chronic bronchitis than in those without, and 2.41 times higher in patients with bronchial asthma than in those without. The risk assessment model for pulmonary dysfunction constructed on this basis had a total score of 28 points, and the area under the subject operating characteristic (ROC) curve was 0.72, reaching the cut-off point of ROC curve while taking scores ≥10 points as the cut-off value for pulmonary dysfunction. ConclusionIn community-based high-risk COPD population, the incidence rate of pulmonary dysfunction is higher in males than that in females, in addition, which increases with the advancement of age. Smoking,insufficient physical activity,recurrent wheezing,post-exercise wheezing or coughing,insensitive to airborne allergens,and history of chronic bronchitis or bronchial asthma are high risk factors for pulmonary dysfunction. The risk assessment model constructed based on these factors has a good predictive effect in screening high-risk population of COPD, but its effectiveness in screening people at general risk needs to be further validated.
9.Application of multi-disciplinary team mode in prevention and control of multidrug resistant organism infection in lung transplant recipients
Sangsang QIU ; Qinfen XU ; Qinhong HUANG ; Yuqing GONG ; Jingyu CHEN ; Bo WU
Organ Transplantation 2024;15(3):443-448
Objective To evaluate the effectiveness of multi-disciplinary team (MDT) mode in the prevention and control of multidrug resistant organism (MDRO) infection in lung transplant recipients. Methods Lung transplant recipients admitted to the hospital from 2019 to 2022 were enrolled. MDT expert group was established in January, 2020. A series of prevention and control measures were conducted. The implementation rate of MDRO prevention and control measures and the detection rate of MDRO on the environmental surface from 2020 to 2022, and the detection rate of MDRO in lung transplant recipients from 2019 to 2022 were analyzed. Results The overall implementation rate of MDRO prevention and control measures for medical staff was increased from 64.9% in 2020 to 91.6% in 2022, showing an increasing trend year by year (P<0.05). The detection rate of MDRO on the environmental surface was decreased from 28% in 2020 to 9% in 2022, showing a downward trend year by year (P<0.05). The detection rate of MDRO in lung transplant recipients was decreased from 66.7% in 2019 to 44.3% in 2022, showing a decreasing trend year by year (P<0.001). Conclusions MDT mode management may enhance the implementation of MDRO prevention and control measures for medical staff, effectively reduce the infection rate of MDRO in lung transplant recipients and the detection rate of MDRO on the environmental surface, which is worthy of widespread application.
10.Analysis of the Difference of Plasma Soluble Glycoprotein A Expression in Positive and Negative Anti-M and Anti-"Mia"Levels in Healthy Blood Donors
Yanlian LIANG ; Linfeng WU ; Xiongchi TANG ; Yuqing SU ; Fan WU ; Shuang LIANG ; Liyan SUN
Journal of Modern Laboratory Medicine 2024;39(1):123-125
Objective To analyze the correlation between the expression of soluble glycoprotein A(GPA)in plasma of healthy blood donors and anti-M and anti-"Mia"antibodies.Methods Plasma from healthy donors from February 9,2022 to February 15,2023 was collected:irregular antibody-negative NN type(group Ⅰ,n=118)and MM type(group Ⅱ,n=51),anti-M antibody positive NN type(group Ⅲ,n=145)and anti-"Mia"antibody positive companion type(group Ⅳ,n= 87),the GPA content in plasma of different individuals in 4 groups was detected,and the difference in GPA expression was analyzed by t-test.Results The average plasma GPA contents in groupsⅠ,Ⅱ,Ⅲ and Ⅳ were 9.941±0.252,10.97±0.256,5.139±0.129 and 4.28±0.139ng/ml,respectively.The average GPA content of groups Ⅰ and Ⅱ was higher,and the average GPA content of groups Ⅲ and Ⅳ was lower,and the differences were statistically significant(all P<0.01).Conclusion The GPA content in plasma of healthy donors with anti-M and anti-"Mia"antibodies was significantly lower than that of the antibody-negative group.The results of this study lay a foundation for further investigation of whether GPA in plasma has the ability to neutralize anti-M and anti-"Mia"antibodies,improve disease diagnosis and safe blood transfusion.

Result Analysis
Print
Save
E-mail