1.Omics for deciphering oral microecology.
Yongwang LIN ; Xiaoyue LIANG ; Zhengyi LI ; Tao GONG ; Biao REN ; Yuqing LI ; Xian PENG
International Journal of Oral Science 2024;16(1):2-2
		                        		
		                        			
		                        			The human oral microbiome harbors one of the most diverse microbial communities in the human body, playing critical roles in oral and systemic health. Recent technological innovations are propelling the characterization and manipulation of oral microbiota. High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes. New long-read platforms improve genome assembly from complex samples. Single-cell genomics provides insights into uncultured taxa. Advanced imaging modalities including fluorescence, mass spectrometry, and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution. Fluorescence techniques link phylogenetic identity with localization. Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification. Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches. Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly, gene expression, metabolites, microenvironments, virulence mechanisms, and microbe-host interfaces in the context of health and disease. However, significant knowledge gaps persist regarding community origins, developmental trajectories, homeostasis versus dysbiosis triggers, functional biomarkers, and strategies to deliberately reshape the oral microbiome for therapeutic benefit. The convergence of sequencing, imaging, cultureomics, synthetic systems, and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict, prevent, diagnose, and treat associated oral diseases.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Phylogeny
		                        			;
		                        		
		                        			Biomimetics
		                        			;
		                        		
		                        			Dysbiosis
		                        			;
		                        		
		                        			Homeostasis
		                        			;
		                        		
		                        			Mass Spectrometry
		                        			
		                        		
		                        	
2.Improvement effects of 3,5,6,7,8,3′,4′-heptamethoxyflavone of Fructus Aurantii on rats with damp blockage of the middle energizer
Wenhui GONG ; Yating XIE ; Li XIN ; Shihao YAN ; Beibei ZHAO ; Yuqing ZHENG ; Jingying GUO ; Jie SHANG ; Peng ZHENG ; Jinlian ZHANG
China Pharmacy 2024;35(7):819-824
		                        		
		                        			
		                        			OBJECTIVE To investigate the improvement effects of 3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF) of Fructus Aurantii on rats with damp blockage of the middle energizer. METHODS The rats were randomly divided into normal group, model group, positive control group (Raceanisodamine tablet, 1 mg/kg), HMF low-dose, medium-dose and high-dose groups (0.3, 0.6, 0.9 mg/kg), with 7 rats in each group. Except for the normal group, the other groups were modeled by internal and external composite factors. After successful modeling, the rats in each group were given the corresponding drug or normal saline, once a day, for 14 days. The general behavioral states such as dietary intake, water intake and mental state of the rats were observed, and the fecal water content rate and saliva flow rate were measured. Hematoxylin-eosin (HE) staining was used to observe the pathological and morphology in gastric and small intestinal tissues of rats. The plasma content of aldosterone was detected, and the expression of aquaporins (AQP3) in the gastric tissue of rats was determined. RESULTS Compared with the normal group, the dietary intake and water intake of the model group rats were significantly decreased (P<0.01), the fecal water content rate, salivary flow rate, plasma content of aldosterone and the expression of AQP3 in gastric tissue were increased significantly (P<0.01). Gastric tissue injury invaded the mucosal muscle layer, resulting in mucosal muscle layer rupture; pathological and morphological changes such as small intestinal villous erosion and glandular structure destruction were observed in the small intestine. Compared with the model group, the dietary intake and water intake of rats were increased in HMF groups; fecal water content rate, salivary flow rate, plasma content of aldosterone, the expression of AQP3 in gastric tissue were decreased, most of the above differences were statistically significant (P<0.05 or P<0.01). The pathological and morphological changes in the gastric and small intestine tissues of rats had been improved to varying degrees. CONCLUSIONS HMF of Fructus Aurantii with dry property HMF could improve the symptoms of rats with damp blockage of middle energizer, the mechanism of which may be associated with reducing the content of plasma aldosterone and down-regulating the expression of gastric AQP3.
		                        		
		                        		
		                        		
		                        	
3.Application of multi-disciplinary team mode in prevention and control of multidrug resistant organism infection in lung transplant recipients
Sangsang QIU ; Qinfen XU ; Qinhong HUANG ; Yuqing GONG ; Jingyu CHEN ; Bo WU
Organ Transplantation 2024;15(3):443-448
		                        		
		                        			
		                        			Objective To evaluate the effectiveness of multi-disciplinary team (MDT) mode in the prevention and control of multidrug resistant organism (MDRO) infection in lung transplant recipients. Methods Lung transplant recipients admitted to the hospital from 2019 to 2022 were enrolled. MDT expert group was established in January, 2020. A series of prevention and control measures were conducted. The implementation rate of MDRO prevention and control measures and the detection rate of MDRO on the environmental surface from 2020 to 2022, and the detection rate of MDRO in lung transplant recipients from 2019 to 2022 were analyzed. Results The overall implementation rate of MDRO prevention and control measures for medical staff was increased from 64.9% in 2020 to 91.6% in 2022, showing an increasing trend year by year (P<0.05). The detection rate of MDRO on the environmental surface was decreased from 28% in 2020 to 9% in 2022, showing a downward trend year by year (P<0.05). The detection rate of MDRO in lung transplant recipients was decreased from 66.7% in 2019 to 44.3% in 2022, showing a decreasing trend year by year (P<0.001). Conclusions MDT mode management may enhance the implementation of MDRO prevention and control measures for medical staff, effectively reduce the infection rate of MDRO in lung transplant recipients and the detection rate of MDRO on the environmental surface, which is worthy of widespread application.
		                        		
		                        		
		                        		
		                        	
4.Discussion on medication law of Cinnamomi Ramulus-Alismatis Rhizoma medicinal pair based on data mining of ancient prescriptions and Chinese patent medicine
Yuqing CAO ; Xiyu SHANG ; Guangkun CHEN ; Yibai XIONG ; Yang GUO ; Yipin FAN ; Xinyu JI ; Zhaoyuan GONG ; Lei ZHANG ; Lin TONG ; Yan MA
International Journal of Traditional Chinese Medicine 2024;46(9):1212-1218
		                        		
		                        			
		                        			Objective:To explore the compatibility and medication law of Cinnamomi Ramulus-Alismatis Rhizoma medicinal pair in ancient and modern prescriptions.Methods:Ancient prescriptions and Chinese patent medicines containing Cinnamomi Ramulus-Alismatis Rhizoma medicinal pair were retrieved from the database of ancient classic famous prescriptions 1.0 and the database of listed Chinese patent medicines 1.0 developed by the Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences. Excel 2019 was used to establish a database. The ancient and modern medical record cloud platform V2.3.5 and SPSS Modeler 18.0 software were used to perform frequency statistics, association rule analysis, clustering analysis, etc. on the data.Results:Totally 79 ancient articles with Cinnamomi Ramulus-Alismatis Rhizoma medicinal pair were obtained, including 76 ancient prescriptions, involving 250 kinds of Chinese materia medica; 25 kinds of Chinese patent medicine were obtained, involving 186 kinds of Chinese materia medica. The drug properties of ancient prescriptions and modern TCM patent medicines were both mainly warm, cold and neutral. The main tastes of ancient prescriptions and modern Chinese patent medicines were pungent, sweet and bitter. And the drugs mainly belong to spleen, lung, liver and kidney meridians. Correlation analysis suggested the same high-frequency association compatibility of ancient and modern prescriptions, Poria-Cinnamomi Ramulus-Alismatis Rhizoma, Atractylodis Rhizoma-Cinnamomi Ramulus-Alismatis Rhizoma, Atractylodis Macrocephalae Rhizoma-Cinnamomi Ramulus-Alismatis Rhizoma. Both clinical symptoms and diseases associated with medicinal compatibility of ancient prescriptions were intestinal flora, edema and vomiting. The syndrome types included bladder impoundment, dampness trapped in the guardian surface, internal retention of phlegm and morbid fluid. The clinical symptoms associated with medicinal compatibility of modern TCM patent medicine were limb joints pain and edema. The diseases included rheumatic arthritis (RA) and kidney disease. The syndrome types included wind-cold-dampness RA, stagnation of collaterals and kidney yang deficiency. High frequency drug clustering yielded 4 clustered squares.Conclusion:The core indications treated by Cinnamomi Ramulus-Alismatis Rhizoma are exogenous diseases with dampness caused by syndrome types including internal storage of water-dampness, cold-dampness obstruction and so on, which can provide reference for further in-depth research and guidance on clinical medication.
		                        		
		                        		
		                        		
		                        	
5.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
		                        		
		                        			
		                        			The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
		                        		
		                        		
		                        		
		                        	
6.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
		                        		
		                        			
		                        			The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
		                        		
		                        		
		                        		
		                        	
7.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
		                        		
		                        			
		                        			The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
		                        		
		                        		
		                        		
		                        	
8.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
		                        		
		                        			
		                        			The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
		                        		
		                        		
		                        		
		                        	
9.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
		                        		
		                        			
		                        			The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
		                        		
		                        		
		                        		
		                        	
10.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
		                        		
		                        			
		                        			The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail