1.Renshentang Alleviates Atherosclerosis in Mice by Targeting TRPV1 to Regulate Foam Cell Cholesterol Metabolism
Yulu YUAN ; Ce CHU ; Xuguang TAO ; Zhen YANG ; Xiangyun CHEN ; Zhanzhan HE ; Yongqi XU ; Yuxin ZHANG ; Peizhang ZHAO ; Wanping CHEN ; Hongxia ZHAO ; Wenlai WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):11-19
ObjectiveTo explore the effects of Renshentang on atherosclerosis (AS) in mice based on the role of transient receptor potential vanilloid1 (TRPV1) in regulating cholesterol metabolism in foam cells. MethodsNine SPF-grade 8-week-old C57BL/6J mice were set as a normal group, and 60 ApoE-/- mice were randomized into model, positive drug (simvastatin, 0.02 g·kg-1·d-1), and low-, medium-, and high-dose (1.77, 3.54, 7.08 g·kg-1·d-1, respectively) Renshentang groups (n=12) according to body weight. The normal group was fed with a normal diet, and the other groups were fed with a high-fat diet and given corresponding drugs by oral gavage for the modeling of AS. The mice were administrated with corresponding drugs once a day for 12 weeks. After the last administration and fasting for 12 h, the aorta was collected. Plaque conditions, pathological changes, levels of total cholesterol (TC), triglcerides (TG), low-density lipoprotein-cholesterol (LDL-C), and high-density lipoprotein-cholesterol (HDL-C), and the expression of TRPV1, liver X receptor (LXR), inducible degrader of the low-density lipoprotein receptor (IDOL), and low-density lipoprotein receptor (LDLR) in the aortic tissue were observed and detected by gross oil red O staining, HE staining, Western blot, immunohistochemistry, and real-time PCR. ResultsCompared with the normal group, the model group presented obvious plaque deposition in the aorta, raised levels of TC, TG, and LDL-C in the serum (P<0.01), up-regulated expression level of LDLR in the aorta (P<0.01), lowered level of HDL-C in the serum, and down-regulated expression levels of TRPV1, LXR, and IDOL in the aorta (P<0.05, P<0.01). Compared with the model group, the positive drug and Renshentang at different doses alleviated AS, elevated the levels of HDL-C, TRPV1, LXR, and IDOL (P<0.05, P<0.01), while lowering the levels of TC, TG, LDL-C, and LDLR (P<0.05, P<0.01). ConclusionRenshentang has a lipid-lowering effect on AS mice. It can effectively reduce lipid deposition, lipid levels, and plaque area of AS mice by activating TRPV1 expression and regulating the LXR/IDOL/LDLR pathway.
2.Renshentang Alleviates Atherosclerosis in Mice by Targeting TRPV1 to Regulate Foam Cell Cholesterol Metabolism
Yulu YUAN ; Ce CHU ; Xuguang TAO ; Zhen YANG ; Xiangyun CHEN ; Zhanzhan HE ; Yongqi XU ; Yuxin ZHANG ; Peizhang ZHAO ; Wanping CHEN ; Hongxia ZHAO ; Wenlai WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):11-19
ObjectiveTo explore the effects of Renshentang on atherosclerosis (AS) in mice based on the role of transient receptor potential vanilloid1 (TRPV1) in regulating cholesterol metabolism in foam cells. MethodsNine SPF-grade 8-week-old C57BL/6J mice were set as a normal group, and 60 ApoE-/- mice were randomized into model, positive drug (simvastatin, 0.02 g·kg-1·d-1), and low-, medium-, and high-dose (1.77, 3.54, 7.08 g·kg-1·d-1, respectively) Renshentang groups (n=12) according to body weight. The normal group was fed with a normal diet, and the other groups were fed with a high-fat diet and given corresponding drugs by oral gavage for the modeling of AS. The mice were administrated with corresponding drugs once a day for 12 weeks. After the last administration and fasting for 12 h, the aorta was collected. Plaque conditions, pathological changes, levels of total cholesterol (TC), triglcerides (TG), low-density lipoprotein-cholesterol (LDL-C), and high-density lipoprotein-cholesterol (HDL-C), and the expression of TRPV1, liver X receptor (LXR), inducible degrader of the low-density lipoprotein receptor (IDOL), and low-density lipoprotein receptor (LDLR) in the aortic tissue were observed and detected by gross oil red O staining, HE staining, Western blot, immunohistochemistry, and real-time PCR. ResultsCompared with the normal group, the model group presented obvious plaque deposition in the aorta, raised levels of TC, TG, and LDL-C in the serum (P<0.01), up-regulated expression level of LDLR in the aorta (P<0.01), lowered level of HDL-C in the serum, and down-regulated expression levels of TRPV1, LXR, and IDOL in the aorta (P<0.05, P<0.01). Compared with the model group, the positive drug and Renshentang at different doses alleviated AS, elevated the levels of HDL-C, TRPV1, LXR, and IDOL (P<0.05, P<0.01), while lowering the levels of TC, TG, LDL-C, and LDLR (P<0.05, P<0.01). ConclusionRenshentang has a lipid-lowering effect on AS mice. It can effectively reduce lipid deposition, lipid levels, and plaque area of AS mice by activating TRPV1 expression and regulating the LXR/IDOL/LDLR pathway.
3.Mechanism of Zhishi Xiebai Guizhitang in Treating AS Based on Regulation of Cholesterol Metabolism in Foam Cells by TRPA1
Zhanzhan HE ; Zhen YANG ; Xuguang TAO ; Xiangyun CHEN ; Wei DING ; Ce CHU ; Yulu YUAN ; Yuxin ZHANG ; Yongqi XU ; Peizhang ZHAO ; Hongxia ZHAO ; Wenlai WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(10):1-10
ObjectiveTo explore the effect and mechanism of Zhishi Xiebai Guizhitang on the progression of atherosclerosis (AS) mice based on the regulation of cholesterol metabolism in foam cells by transient receptor potential channel ankyrin 1 (TRPA1). MethodThe AS model was established on apolipoprotein E knockout (ApoE-/-) mice with a high-fat diet. The mice were randomly divided into low-dose, middle-dose, and high-dose groups of Zhishi Xiebai Guizhitang (2.97, 5.94, 11.88 g·kg-1) and simvastatin group (0.002 g·kg-1), and the drug was administered along with a high-fat diet. C57BL/6J mice were fed an ordinary diet as a normal group. After the above process, the aorta and serum of mice were taken. The pathological changes of the aortic root were observed by hematoxylin-eosin (HE) staining. The lipid plaques in the aorta were observed by gross oil redness. Serum levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), and high density lipoprotein cholesterol (HDL-C) were detected, and the levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18) were detected by enzyme-linked immunosorbent assay (ELISA). Western blot and immunohistochemical method were used to analyze the expression of TRPA1, ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), and mannose receptor (CD206). ResultFrom the perspective of drug efficacy, compared with the normal group, pathological changes such as plaque, a large number of foam cells, and cholesterol crystals appeared in the aorta of the model group, and the serum levels of TC, LDL-C, IL-1β, and IL-18 were significantly increased (P<0.01). The HDL-C level was significantly decreased (P<0.01), and the CD206 level in aortic tissue was significantly decreased (P<0.01). Compared with the model group, the lipid deposition in the aorta was alleviated in all drug administration groups. In addition, except for the high-dose group of Zhishi Xiebai Guizhitang, all drug administration groups could significantly decrease the levels of TC and LDL-C (P<0.01). In terms of inflammation, except for the middle-dose group of Zhishi Xiebai Guizhitang, the levels of IL-1β and IL-18 were significantly decreased in all drug administration groups (P<0.05). Moreover, Zhishi Xiebai Guizhitang could also up-regulate the levels of CD206, and the difference was significant in the middle-dose and high-dose groups (P<0.05). From the perspective of mechanism, the expression levels of TRPA1, ABCA1, and ABCG1 in the aorta in the model group were lower than those in the normal group (P<0.05). Compared with the model group, all drug administration groups significantly increased the expression of TRPA1 in the aorta (P<0.05), and the expressions of ABCA1 and ABCG1 were increased. The differences in the middle-dose and high-dose groups and the simvastatin group were significant (P<0.05), which was basically consistent with the trend of immunohistochemical results. ConclusionZhishi Xiebai Guizhitang can effectively reduce blood lipid and inflammation levels and inhibit the formation of aortic plaque. The mechanism may be explained as follows: the expressions of ABCA1 and ABCG1 downstream are increased through TRPA1, which promotes cholesterol outflow in foam cells, thereby regulating cholesterol metabolism, intervening in inflammation level to a certain extent, and finally treating AS.
4.Aortic stenosis of fetus caused by chimeric Y-chromosome isobaric double-adherent granules:A case report and literature review
Yulu QUAN ; Pingping ZHANG ; Yan LUO ; Jing HUO ; Xiaoping YU ; Yanmei SUN ; Yali LI
Journal of Jilin University(Medicine Edition) 2024;50(1):260-264
Objective:To confirm the potential etiological factors of congenital aortic stenosis(AS)by genetic analysis on prenatal diagnostic results of the fetus with AS.Methods:Amniocentesis for chromosomal G-band karyotyping combinated with single nucleotide polymorphism array(SNP-array)analysis was conducted on the amniotic fluid collected from a 25-week pregnant woman diagnosed as"fetus AS";chromosome karyotyping was also performed on the peripheral blood of the fetal parents.Results:The fetal karyotype analysis showed a chimeric Y-chromosome isobaric double-adherent granules.The SNP-array analysis results revealed a 11.2 Mb duplication in the Yp11.31q11.21 region and a 14.8 Mb deletion in the Yq11.21q11.23 region.Both the parents presented a normal karyotype,suggesting it was a newfound mutation.After extensive genetic counseling,the pregnant woman and her family chose to terminate the pregnancy locally.Conclusion:The chromosomal karyotype of the chimeric Y-chromosome isobaric double-adherent granules may be a contributing factor to the AS phenotype in the male fetus.The combined use of chromosomal karyotyping and SNP-array analysis on the amniotic cells is instrumental in the early diagnosis of the disease.
5.Effect and Mechanism of Chinese Medicine in Treatment of Osteoporosis
Yulu YUAN ; Zhen YANG ; Wei DING ; Ce CHU ; Xuguang TAO ; Xiangyun CHEN ; Zhanzhan HE ; Peizhang ZHAO ; Yongqi XU ; Yuxin ZHANG ; Hongxia ZHAO ; Wenlai WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(4):290-298
Osteoporosis (OP) is a common bone disease affecting the quality of life and causing huge medical burden to the patients and society. The occurrence of OP is mainly caused by excessive bone resorption and insufficient bone formation, which are directly influenced by external calcium ion balance. Calcium imbalance can impair bone integrity, reduce the calcium supply to the bone, and lower the calcium content in the bone, thus triggering OP. Drugs are the main anti-OP therapy in modern medicine, which, however, may cause adverse reactions and drug dependence. Chinese medicines have good clinical effects and high safety in treating OP, being suitable for long-term use. Recent studies have shown that Chinese medicines can alleviate estrogen deficiency, regulate bone cell and calcium metabolism, which is crucial for the formation and development of OP. The transient receptor potential cation channel superfamily V members 5 and 6 (TRPV5 and TRPV6, respectively) affect bone homeostasis by mediating the transmembrane calcium ion transport in the intestine (TRPV6) and kidney (TRPV5). Therefore, TRPV5/6 is one of the key targets to understand the anti-OP mechanisms of the effective parts of Chinese medicines, which is worthy of further study. This paper summarizes the research results about the anti-OP effects of Chinese medicines in the last two decades, especially the mechanism of regulating calcium metabolism, aiming to provide new ideas for the basic research, clinical application, and drug development of OP treatment.
6.Mechanism of telomerase in affecting biological characteristics of gastric cancer
Yulu WANG ; Junmin ZHU ; Zhiyao HAN ; Senhuan WANG ; Youxi JIANG ; Minmin ZHANG ; Gang CHEN
International Journal of Surgery 2024;51(1):66-72
Gastric cancer is one of the major diseases threatening human health, with a high incidence and a low early diagnostic rate. There are many bottlenecks encountered during its treatment. Consequently, improving the early diagnostic rate and exploring new therapeutic targets are currently urgent challenges that need to be addressed. Telomerase is undetectable in normal tissues, but it exhibits high specificity and sensitivity in most cancers and has a definite correlation with prognosis. It may serve as a serum tumor marker and prognostic indicator. Human telomerase reverse transcriptase (hTERT) gene polymorphism can regulate the susceptibility of people to gastric cancer, and affect the occurrence, development, proliferation and apoptosis of gastric cancer through its target gene. Substances such as resistin, visfatin, G-quadruplex and methylenedioxyaniline can affect the occurrence and development of gastric cancer by regulating telomerase expression. The mechanism by which hTERT regulates tumor invasion and metastasis is currently unclear, so elucidating its mechanism is of great significance.This paper will review the research progress of this mechanism in recent years.
7.Exploring the Mechanism of Baihe Dihuang Decoction in the Treatment of Alzheimer's Disease Based on Network Pharmacology, Molecular Docking and Animal Experiment
Ru JIA ; Xiaoru ZHOU ; Yan CHEN ; Shuling ZHANG ; Zhaokai LAI ; Yulu WANG
Chinese Journal of Modern Applied Pharmacy 2024;41(8):1027-1037
OBJECTIVE
To explore the mechanism of Baihe Dihuang decoction in the treatment of Alzheimer's disease(AD) based on network pharmacology, molecular docking and animal experiment.
METHODS
TCMSP were used to predict the active components and targets of Baihe Dihuang decoction and disease-related targets were collected from GeneCards, OMIM and DRUGBANK databases, respectively. Target protein interactions were analyzed with STRING database and biological function and pathway were analyzed with Metascape database. Lastly relevant results were analyzed with Cytoscape 3.8.0. AutoDock vina software was used for molecular docking to analyze the binding energy of the active components and key targets of Baihe Dihuang decoction. PyMOL software were used to visualize the optimal docking results. ICR male mice were randomly divided into control group, model group, Rolipram group, low, medium and high dose group of Baihe Dihuang decoction. After 14 days of administration, the neurobehavioral scores of mice in each group were collected, and the expression of related proteins in brain tissue was detected, ELISA and Western blotting were used to detect the expression of the key protein cAMP, PKA, p-CREB and BDNF. At last, the adverse reaction of Baihe Dihuang decoction was observed by vomiting experiment.
RESULTS
A total of 13 active components and 39 key targets were collected from network pharmacology. The docking results showed that the first 10 core targets all performed well and their effects were closely related to PRKACA. Compared with the control group, the model group mice's recognition rate of new objects and the spontaneous alternation reaction rate were significantly reduced, the escape latency was significantly prolonged, and the target quadrant stay time, the number of crossing platforms were significantly reduced; cAMP, PKA, p-CREB and BDNF in the hippocampus of mice was significantly decreased. Baihe Dihuang decoction could reverse the behavior of AD mice and the expression of cAMP, PKA, p-CREB and BDNF. In the vomiting experiment, the anesthesia recovery time of the Rolipram group was significantly prolonged, while that of the Baihe Dihuang decoction group was not significantly affected.
CONCLUSION
The mechanism of Baihe Dihuang decoction in the treatment of AD may be related to its influence on cAMP-PKA and regulation of cAMP-PKA-CREB-BDNF signal pathway, and the adverse reactions are milder than those of clopramide.
8.Clinical application of reconstruction of pelvic floor with pedunculated omentum flap combined with basement membrane biological products in pelvic exenteration with sacrococcygeal bone
Guoliang CHEN ; Yulu WANG ; Qifeng XIE ; Ning SU ; Zhiguo WANG ; Guoyi SHAO ; Jian ZHANG
Chinese Journal of Gastrointestinal Surgery 2024;27(11):1162-1167
Objective:To introduce the experience of reconstructing the pelvic floor with a pedicled large omental flap combined with a basement membrane biological mesh in combined pelvic organ resection for locally advanced or locally recurrent rectal cancer combined with sacrococcygeal resection, and to discuss the feasibility, safety, and near-term therapeutic efficacy of this technique.Methods:For patients with sacrococcygeal resection of combined pelvic organs, a basement membrane mesh was used to rebuild the pelvic floor with a pedicled greater omentum flap to isolate the abdominopelvic cavity. The main operation was to pull the greater omentum, which preserved the double vascular arches, to the pelvic floor to cover the pelvic floor, and then the mesh was used to cover the posterior peritoneal defect and pelvic inlet with absorbable sutures of 2-0 or thicker.Results:In this study, a retrospective cohort study was used to collect clinical data through the China Rectal Cancer Combined Pelvic Organs Resections Case Database. Twenty patients with locally advanced or locally recurrent rectal cancer without extra-pelvic metastasis or only oligometastases underwent combined pelvic organ and sacrococcygeal resection in the Department of Anal and Intestinal Surgery of the Second Affiliated Hospital of the Naval Military Medical University during the period of July 1, 2022, to June 30, 2023, and 10 patients underwent simple basement membrane resection with a simple basement membrane. Among them, the pelvic floor were reconstructed by basement membrane mesh alone in 10 cases (mesh only group), and 10 cases were reconstructed the pelvic floor by pedicled large omental flap combined with basement membrane mesh (omental flap-combined mesh group). The recent outcomes of the two groups of patients were studied comparatively. Comparison of baseline data and intraoperative conditions between the two groups showed no statistically significant differences (all P>0.05); the drain removal time in the omental flap-combined mesh group was 26.7 (19-42) days, which was shorter than that in the mesh only group, which was 40.4 (24-56) days ( U=4.125, P=0.001); The empty pelvis healing time in the omental flap-combined mesh group was 29.4 (23~43) days, which was shorter than that of 42.2 (27~58) days in the mesh-only group ( U=4.043, P=0.001); the differences were all statistically significant. The postoperative complication rate of grade ≥III in the omental flap-combined mesh group was 1/10, which was lower than that of 6/10 in the mesh-only group; the difference was not statistically significant when comparing the two groups ( P = 0.057). Follow-up ended on 09/30/2023, with a median follow-up of 9.5 (3-15) months in 20 patients, and all 20 cases survived during the follow-up period, with no tumor recurrence at the surgical site. Conclusion:In locally advanced or locally recurrent rectal cancer undergoing combined pelvic organ resection with sacrococcygeal, compared with reconstruction of the pelvic floor by basement membrane mesh alone, reconstruction of the pelvic floor and isolation of the abdominopelvic cavity by a pedicled greater omentum flap combined with a basement membrane mesh is safe and feasible.
9.Linggui Zhugantang Treats Chronic Bronchitis in Rats via PLA2-TRPV1/TRPA1 Pathway
Wei DING ; Wenlai WANG ; Zhenhong LIU ; Xiangyun CHEN ; Zhanzhan HE ; Ce CHU ; Yulu YUAN ; Yongqi XU ; Yuxin ZHANG ; Peizhang ZHAO ; Zhen YANG ; Hongxia ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(14):1-9
ObjectiveTo study the effect and mechanism of Linggui Zhugantang in treating chronic bronchitis (CB) induced by exposure to cigarette smoke combined with tracheal instillation of lipopolysaccharide (LPS). MethodSixty SPF-grade SD rats were randomly divided into normal, model, dexamethasone (1 mg·kg-1), and high-, medium-, and low-dose (30.06, 15.03, 7.515 g·kg-1, respectively) Linggui Zhugantang groups by the body weight stratification method, with 10 rats in each group. Each group was administrated with 200 μL LPS (1 g·L-1) by tracheal instillation on days 1 and 14, respectively, while the normal group was administrated with an equal volume of normal saline. Except the normal group, the other groups were exposed to cigarette smoke on days 2-13 and 15-30 (10 cigarettes/time/30 min, twice/day) for the modeling of CB. The rats were administrated with corresponding drugs by gavage for 30 consecutive days from day 2 of modeling, and the mental status, behavior, and body weights of the rats were observed and measured. The wet/dry mass ratio (W/D) of the left lung was measured 30 days after modeling. Hematoxylin-eosin staining was employed to observe the pathological changes in the lung and bronchial tissues. The bronchial mucus secretion and goblet cell proliferation were observed by Alcian blue-periodic acid Schiff (AB-PAS) staining. The levels of mucin 5AC (MUC5AC), interleukin (IL)-13, IL-6, and tumor necrosis factor (TNF)-α in the serum were determined by enzyme-linked immunosorbent assay. The expression of phospholipase A2 (PLA2), transient receptor potential vanilloid receptor 1 (TRPV1), and transient receptor potential ankyrin 1 (TRPA1) in the lung tissue was quantitatively analyzed by immunohistochemistry and Western blot. ResultCompared with the normal group, the model group showcased abnormal mental status and behaviors, bloody secretion in the nose and mouth, the mortality rate of 40%, decreased body weight, severe lung bronchial structure damage, a large number of inflammatory mediators and inflammatory cell infiltration in the tube wall, hyperemia, edema, and fibroplasia, massive proliferation of goblet cells, excessive secretion and accumulation of mucus, stenosis and deformation of the lumen, and aggravation of pulmonary edema (P<0.01). In addition, the model group had higher levels of MUC5AC, IL-13, IL-6, and TNF-α in the serum and higher expression of PLA2 in the lung tissue than the normal group (P<0.01). Compared with the model group, the medication groups showed normal mental status and behaviors, reduced mortality rate, stable weight gain, reduced lung and bronchial injuries, decreased goblet cell proliferation and mucus secretion, and alleviated pulmonary edema (P<0.01). Furthermore, Linggui Zhugantang lowered the levels of MUC5AC, IL-13, IL-6, and TNF-α in the serum and down-regulated the protein levels of PLA2, TRPV1, and TRPA1 in the lung tissue (P<0.01). ConclusionLinggui Zhugantang can reduce the pulmonary inflammation and airway mucus hypersecretion in the rat model of chronic bronchitis. It may exert the effects of reducing inflammation and resolving phlegm by regulating the PLA2-TRPV1/TRPA1 pathway.
10.Effect of Qingfei Paidu Decoction on Acute Lung Injury Model Mice Based on TRPV1/TRPA1 Heat-sensitive Channel
Yulu YUAN ; Zhanzhan HE ; Ce CHU ; Xuguang TAO ; Zhen YANG ; Xiangyun CHEN ; Wei DING ; Yongqi XU ; Yuxin ZHANG ; Peizhang ZHAO ; Wanping CHEN ; Hongxia ZHAO ; Wenlai WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(24):95-102
ObjectiveTo investigate the mechanism and effect of Qingfei Paidu decoction on transient receptor potential vanilloid-1/Transient receptor potential ankyrin1 (TRPV1/TRPA1) based on heat-sensitive channel and inflammatory response. MethodAccording to body weight, 80 8-week-old C57BL/6 mice were randomly divided into the normal group, model group, dexamethasone group (5 mg·kg-1), and low-dose, medium-dose, and high-dose groups of Qingfei Paidu decoction (14.865, 29.73, 59.46 g·kg-1), with 12 mice in each group. In addition to the normal group, the other groups were administered 20 μL (1×10-3 g·kg-1) to each mouse by airway infusion to establish the acute lung injury (ALI) model. In the administration group, the drug was given 1 h after modeling and again after an interval of 24 h. The lung tissue was taken 36 h after modeling. Double lung wet/dry weight ratio(W/D), hematoxylin-eosin (HE) staining, enzyme-linked immunosorbent assay (ELISA), and Western blot were used to observe and detect the pathological changes of lung tissue, expression levels of inflammatory cytokine tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and expressions of TRPV1 and TRPA1 proteins in heat-sensitive channel, nuclear factor kappa-B (NF-κB), inhibitor of NF-κB (IκBα) in inflammatory pathway, and phosphorylated proteins. The phosphorylated protein/total protein ratio was calculated. ResultCompared with that in the normal group, the lung tissue of mice in the model group was seriously damaged, and pulmonary capillary permeability increased. Alveolar capillary congestion and dilation destroyed the complete structure of the alveolar, and the alveolar wall thickened. A large number of inflammatory cells and red blood cells were infiltrated, and pulmonary edema was significantly aggravated. The expressions of TNF-α, IL-6, TRPV1, TRPA1, phosphorylated NF-κB p65/NF-κB p65, and phosphorylated IκBα/IκBα were significantly increased (P<0.01), and the whole lung W/D was significantly increased (P<0.01). Compared with the model group, the dexamethasone group and low-dose, medium-dose, and high-dose groups of Qingfei Paidu decoction could significantly improve pulmonary edema. TNF-α, IL-6, TRPV1, TRPA1, lung tissue NF-κB p65, and IκBα phosphorylated protein/total protein ratio decreased significantly (P<0.05, P<0.01). The whole lung W/D also decreased significantly (P<0.05, P<0.01). ConclusionQingfei Paidu decoction has anti-inflammatory and protective effects on LPS-ALI mice, which can effectively reduce inflammation, induce diuresis, and alleviate edema. Its mechanism may be related to the regulation of the expression of TRPA1 and TRPV1 and the inhibition of the activation of the NF-κB pathway.


Result Analysis
Print
Save
E-mail