1.Anti-tumor Mechanism of Traditional Chinese Medicine with Effect of Softening Hardness and Dissipating Mass: A Review
Yue HU ; Linfeng WANG ; Yue LI ; Rui LIU ; Baojin HUA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):276-286
The global burden of malignant tumors keeps increasing, and the increased morbidity and mortality make malignant tumors one of the major challenges to global health. Currently, malignant tumors are mainly managed by surgical resection, radiotherapy, chemotherapy, targeted therapy, and immunotherapy, which, however, usually cause serious adverse reactions, such as tissue damage, immune function inhibition, and multidrug resistance, affecting the prognosis and quality of life of the patients. Traditional Chinese medicine with low toxic and side effects and multi-target, multi-system, and multi-pathway therapeutic effects has shown positive therapeutic potential in cancer treatment. In particular, the traditional Chinese medicine with the effects of softening hardness and dissipating mass, which contains a variety of active ingredients, have shown strong inhibitory effects on tumor cells. Such medicine can not only directly attack tumor cells and inhibit their proliferation and invasion but also exert therapeutic effects by inducing apoptosis, blocking tumor-related signaling pathways, and inhibiting tumor angiogenesis. In addition, traditional Chinese medicine can improve the overall efficacy of cancer treatment by regulating the immune status of the body and reversing the drug resistance of tumor cells. Traditional Chinese medicine can exert the anti-tumor effect by regulating intracellular signaling pathways, which is one of the research hotspots in this field. Signaling pathways such as signal transducer and activator of transcription 3 (STAT3), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), and mitogen-activated protein kinase (MAPK) play a key role in the formation and development of tumors. Traditional Chinese medicine can regulate the growth, apoptosis, and metabolic process of tumor cells by affecting the activity of these signaling pathways, thus exerting the therapeutic effects on tumors. Based on these mechanisms, a large number of experimental studies and clinical trials have proved that traditional Chinese medicine has broad prospects in anti-tumor treatment. To further verify these research results and provide a basis for the clinical application of traditional Chinese medicine and the development of new drugs, a systematic review and integrated analysis of the research reports on the anti-tumor effect of traditional Chinese medicine was carried out to summarize the anti-tumor mechanisms of traditional Chinese medicine. This review is expected to promote the wide application of traditional Chinese medicine in anti-tumor treatment worldwide and bring more hope and possibility to cancer patients.
2.Optimization Strategy and Practice of Traditional Chinese Medicine Compound and Its Component Compatibility
Zhihao WANG ; Wenjing ZHOU ; Chenghao FEI ; Yunlu LIU ; Yijing ZHANG ; Yue ZHAO ; Lan WANG ; Liang FENG ; Zhiyong LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):299-310
Prescription optimization is a crucial aspect in the study of traditional Chinese medicine (TCM) compounds. In recent years, the introduction of mathematical methods, data mining techniques, and artificial neural networks has provided new tools for elucidating the compatibility rules of TCM compounds. The study of TCM compounds involves numerous variables, including the proportions of different herbs, the specific extraction parts of each ingredient, and the interactions among multiple components. These factors together create a complex nonlinear dose-effect relationship. In this context, it is essential to identify methods that suit the characteristics of TCM compounds and can leverage their advantages for effective application in new drug development. This paper provided a comprehensive review of the cutting-edge optimization experimental design methods applied in recent studies of TCM compound compatibilities. The key technical issues, such as the optimization of source material selection, dosage optimization of compatible herbs, and multi-objective optimization indicators, were discussed. Furthermore, the evaluation methods for component effects were summarized during the optimization process, so as to provide scientific and practical foundations for innovative research in TCM and the development of new drugs based on TCM compounds.
3.Cloning and Functional Characterization of Farnesyl Diphosphate Synthase Gene in Biosynthesis of Terpenoid Components in Chinese Materia Medica
Yue ZHANG ; Feng ZHANG ; Yue ZHANG ; Chaoyue LIU ; Bolin ZHANG ; Jia LIU ; Caixia WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):175-183
ObjectiveThis study aims to enhance of the farnesyl pyrophosphate(FPP) pool in Saccharomyces cerevisiae by heterologously expressing different farnesyl diphosphate synthases(FPSs) from various plants, thereby increasing the production of terpenoid compounds by the engineered yeast. MethodsRNA from mixed samples of roots, stems, and leaves of seven plants including Arabidopsis thaliana, Rosa rugosa, Artemisia annua, Centella asiatica, Humulus lupulus, Medicago sativa, and Panax ginseng was extracted by column chromatography and reverse transcribed into the first strand of complementary DNA(cDNA), and based on the transcriptome data of the seven species of plants, sequence-specific primers were designed for CaFPS, RrFPS, MsFPS, HiFPS, PgFPS, AtFPS, and AaFPS, the full-length of the genes was cloned, and the genes were analyzed for bioinformatics in order to construct a pESC yeast shuttle vector. These seven plant-derived FPSs were further heterologously expressed in the previous constructed β-elemene-producing yeast, and the yield of β-elemene was indicated for their catalytic acivities. ResultsThe coding sequences of CaFPS, RrFPS, MsFPS, HiFPS, PgFPS, AtFPS, and AaFPS were all of 1 021 bp in length and encoding 301 amino acids, all of which were similarly related to the endogenous FPS-encoding gene(ERG20) in S. cerevisiae. After heterologous expression, RrFPS was identified as the most effective in catalyzing the synthesis of FPP from isopentenyl pyrophosphate(IPP) and dimethylallyl pyrophosphate(DMAPP). Compared to the control strains, the RrFPS overexpressed yeast strains YB-1-Rr and YB-3-Rr increased the production of β-elemene by 231.25% and 189.3%, respectively. ConclusionBy comparing the functions of FPS-encoding genes from seven different plant sources, it is determined that the protein encoded by the RrFPS from R. rugosa has the best catalytic ability, which can provide key genetic elements for the construction of engineered yeast strain constructs with high terpenoid production.
4.Mechanism of Modified Shaofu Zhuyutang in Antagonising Ectopic Endometrial Tissue Fibrosis Based on Cellular Pyroptosis Mediated by TRL4/NF-κB/NLPR3 Signaling Pathway
Zuoliang ZHANG ; Jiaxing WANG ; Wanrun WANG ; Xiangyu LIN ; Bin YUE ; Zhirui ZHANG ; Yinan WANG ; Yaling YANG ; Dongqing WEI ; Cancan HUANG ; Quansheng WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):19-28
ObjectiveTo investigate the mechanism of action of modified Shaofu Zhuyutang in antagonizing cellular pyroptosis and fibrosis in ectopic endometrial tissues of endometriosis through the Toll-like receptor 4/nuclear factor-κB/NOD-like receptor protein 3 (TRL4/NF-κB/NLPR3) signaling pathway. MethodsSeventy-two SPF-grade female SD rats were randomly divided into a sham-operated group (n = 12) and a modeling group (n = 60). The rats in the sham-operated group underwent a caesarean section, while the rats in the modeling group were used to establish an endometriosis model through the auto-transplantation method. After successful modeling, the animals were randomly divided into the model group, progesterone group (0.25 mg·kg-1), and modified Shaofu Zhuyutang low-, medium-, and high-dose groups (7.5, 15, 30 g·kg-1), with 12 animals in each group. After 4 weeks of drug administration, voluntary activity and heat pain latency were observed. The rats were sacrificed for tissue collection, and Masson staining were used to observe histopathological changes in the endometrial tissues. Enzyme-linked immunosorbent assay (ELISA) was used to measure serum levels of interleukin-18 (IL-18), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β). Immunohistochemistry (IHC) was used to detect the protein expression area of tumor necrosis factor-related factor 6 (TRAF6) and NLPR3 in the endometrial tissues. Immunofluorescence (IF) was used to detect the relative fluorescence intensity of Caspase-1 and gasdermin D (GSDMD) in the endometrial tissues. Western blot was employed to measure the relative expression of TRL4, myeloid differentiation factor 88 (MyD88), TRAF6, NF-κB p65, phosphorylated NF-κB p65 (p-NF-κB p65), and NLPR3 proteins in endometrial tissues. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of TRL4, MyD88, TRAF6, NF-κB, and NLPR3 in the endometrial tissues. ResultsCompared with the sham-operated group, rats in the model group showed reduced voluntary activity and shorter heat pain latency. Serum levels of IL-18, IL-1β, TNF-α, and TGF-β were elevated. The relative expression areas of TRAF6 and NLPR3 proteins were increased, and the relative fluorescence intensity of Caspase-1 and GSDMD was enhanced. The relative expression of TRL4, MyD88, TRAF6, NF-κB p65, p-NF-κB p65, and NLPR3 proteins, along with the expression of TRL4, MyD88, TRAF6, NF-κB, and NLPR3 mRNA, were significantly increased (P<0.01). Compared with the model group, rats in the progesterone group and the modified Shaofu Zhuyutang medium- and high-dose groups exhibited improved voluntary activity, longer heat pain latency, the fibrosis of endometrial tissue is alleviated. Serum levels of IL-18, IL-1β, TNF-α, and TGF-β were decreased. The relative expression areas of TRAF6 and NLPR3 proteins decreased, and the relative fluorescence intensity of Caspase-1 and GSDMD weakened. The relative expression of TRL4, MyD88, TRAF6, p-NF-κB p65, NLPR3 proteins, and TRL4, MyD88, TRAF6, NF-κB, and NLPR3 mRNA expression were reduced (P<0.05, P<0.01). ConclusionModified Shaofu Zhuyutang may play a therapeutic role in endometriosis by interfering with key proteins in the TRL4/NF-κB/NLPR3 signaling pathway, reducing NLRP3 inflammasome-induced cellular pyroptosis, antagonizing the fibrosis process in ectopic endometrial tissues, improving the inflammatory microenvironment in the pelvic cavity, and alleviating pain.
5.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
6.Effect of Icariin on Steroid-induced Ferroptosis in Rat Bone Microvascular Endothelial Cells
Jiancheng TANG ; Yue ZHANG ; Ruichen JIANG ; Zhengrong YUE ; Ming LI ; Yaqi ZHANG ; Zetao YIN ; Weiguo WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):131-140
ObjectiveTo investigate the effect of icariin (ICA) on steroid-induced ferroptosis in bone microvascular endothelial cells (BMECs). MethodsRat BMECs were selected and treated with 500 mg·L-1 hydrocortisone for 1.5 h to establish a ferroptosis model of BMECs. The experimental cells were divided into a blank group, hormone group (500 mg·L-1 hydrocortisone), ICA group (500 mg·L-1 hydrocortisone + 34 mg·L-1 ICA), and ferroptosis agonist group (500 mg·L-1 hydrocortisone + 34 mg·L-1 ICA + 2.7 mg·L-1 erastin). Cell viability was detected by CCK-8. The levels of ferrous ion, glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), and reactive oxygen species (ROS) were detected by related kit species. The ferroptosis-related proteins, such as glutathione peroxidase 4(GPX4), ferritin light chain (FTL), and transferrin receptor protein1 (sTfR) were detected by Western blot, as well as autophagy-related proteins including microtubule-associated protein 1 light chain 3B (LC3B), Beclin1, B-cell lymphoma-2 (Bcl-2), and Caspase-3. Results500 mg·L-1 hydrocortisone intervention for 1.5 h could effectively induce ferroptosis in BMECs, and ferroptosis levels could reach a peak as the intervention continued. In terms of cellular antioxidant capacity, compared with those in the blank group, the cell vitality, GSH in the hormone group decreased significantly, and the levels of ROS, SOD, MDA, and ferrous ions were significantly increased (P<0.01). Compared with those in the hormone group, the cell viability, GSH were significantly increased, and the levels of ROS, SOD, MDA, and ferrous ions were decreased in the ICA group (P<0.01). Compared with those in the ICA group, the cell vitality, GSH in the ferroptosis agonist group decreased significantly, and the levels of ROS, SOD, MDA, and ferrous ions increased significantly (P<0.01). In terms of the relationship between ferroptosis and autophagy, compared with the blank group, the hormone group had significantly increased expression levels of LC3B, sTfR, Beclin1, and FTL and significantly decreased expression levels of GPX4 (P<0.01). Compared with the hormone group, The ICA group had significantly decreased expression levels of LC3B, sTfR, and FTL and significantly increased expression levels of Beclin 1 and GPX4 (P<0.01). Compared with those in the ICA group, the expression levels of LC3B, sTfR, and FTL increased in the rapamycin group, and those of Beclin 1 and GPX4 decreased (P<0.01). In terms of cell ferroptosis and apoptosis,compared with the blank group, the hormone group had significantly increased expression levels of FTL, sTfR and Caspase-3 and significantly decreased expression levels of GPX4, and Bcl-2 (P<0.01). Compared with the hormone group, the ICA group had significantly decreased expression levels of FTL, sTfR and Caspase-3 and significantly increased expression levels of GPX4, and Bcl-2 (P<0.01). Compared with those in the ICA group, the expression levels of FTL, sTfR and Caspase-3 in the ferroptosis agonist group were increased, and the expression levels of GPX4, and Bcl-2 were decreased (P<0.01). In terms of cell function,compared with that in the blank group, the ability of cell migration and tube formation was significantly decreased in the hormone group (P<0.01). Compared with that in the hormone group, the cell migration and tube formation ability in the ICA group were significantly increased (P<0.01). ConclusionFerroptosis is involved in steroid-induced damage in BMECs. ICA can inhibit steroid-induced ferroptosis in BMECs, and the mechanism may be associated with the inhibition of ferroptosis by regulating autophagy.
7.Effect of Different Degrees of Blood Stasis on Cognitive Function and Plasma Differential Metabolites in Patients with Coronary Heart Disease
Shihan XU ; Yanfei LIU ; Fenglan LIU ; Qing WANG ; Fengqin XU ; Yue LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):167-176
ObjectiveTo explore the correlation between the blood stasis score of coronary heart disease(CAD) and mild cognitive impairment(MCI), as well as the changes in plasma metabolic profile of blood stasis in patients with CAD combined with MCI(CADMCI) through a cross-sectional study, and further explore the impact of different degrees of blood stasis on the plasma metabolite profile of CADMCI patients. MethodsAccording to the diagnostic criteria of CAD and CAD blood stasis, patients hospitalized in Xiyuan Hospital of China Academy of Chinese Medical Sciences from October 2022 to October 2023 were continuously included. According to the Montreal Cognitive Assessment(MoCA) scale score, the enrolled patients were divided into CADMCI blood stasis group and CAD blood stasis group. The association between blood stasis score and MCI was analyzed by multivariate Logistic regression model. The receiver operating characteristic(ROC) curve was drawn, and the area under the curve(AUC) was calculated to evaluate the sensitivity and specificity of the model. According to the blood stasis score, the first 30 patients in the CADMCI blood stasis group and CAD blood stasis group were divided into mild blood stasis and severe blood stasis. Ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was used to detect plasma metabolites in each group of patients. The differential metabolites were screened according to variable importance in the projection(VIP) value≥1, fold change(FC)<0.67 or >1.5, and P<0.05. ROC curve analysis was further used to evaluate the discriminatory efficiency of the screened differential metabolites for each group of samples. ResultsA total of 266 CAD patients were included in this study. Multivariate Logistic regression analysis showed that the CAD blood stasis score was significantly correlated with MCI[odds ratio(OR)=1.619, 95% confidence interval(CI) 1.223-2.142, P<0.001, ROC curve AUC was 0.615(95% CI 0.547-0.683, P=0.001)], indicating that the CAD blood stasis score has a certain predictive value for MCI. Plasma non-targeted metabolomics analysis showed that the main differential metabolites between CAD blood stasis and CADMCI blood stasis were lipid metabolites, among which phosphatidylcholine[20∶4(5Z, 8Z, 11Z, 14Z)/P-18∶1(11Z)] had the best discriminatory efficiency(ROC curve AUC=0.867, 95% CI 0.754-0.942). Further analysis of the differential metabolites between mild and severe blood stasis showed that lipid metabolites were also the main differential metabolites between mild and severe blood stasis. Among them, 1α,25-dihydroxy-2β-(2-hydroxyethoxy) vitamin D3 had the best efficacy in distinguishing mild and severe CAD blood stasis(AUC=0.813, 95% CI 0.649-0.951), and phosphatidylcholine 34∶2 had the best efficacy in distinguishing mild and severe CADMCI blood stasis(AUC=0.819, 95% CI 0.640-0.941). ConclusionThere is a significant correlation between CAD blood stasis score and MCI. Phosphatidylcholine metabolites play an important role in the pathogenesis of CADMCI blood stasis and severe blood stasis. The CAD blood stasis score combined with the detection of phosphatidylcholine metabolites can provide a reference for the development of early and efficient identification strategies for CADMCI.
8.Analysis on Dynamic Change of Stir-fried Glycyrrhizae Radix et Rhizoma Quality Based on "Exterior-interior Correlation"
Yue XU ; Zhe JIA ; Yun WANG ; Bing LI ; Deling WU ; Cun ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):194-202
ObjectiveIn order to provide a reference for the optimization of preparation process of stir-fried Glycyrrhizae Radix et Rhizoma(sf-GRR), the quality changes during the processing was studied. MethodsGlycyrrhizae Radix et Rhizoma was processed by stir-frying for 17 min, and samples were collected every 1 min during the processing. The appearance color of the samples was determined by visual analysis technology, the moisture and extract of the process samples were detected by the drying method and the hot extraction method of alcohol-soluble extract in the general rules of the 2020 edition of Chinese Pharmacopoeia(part Ⅳ), and the contents of liquiritin apioside, liquiritin, isoliquiritin apioside, isoliquiritin, licoricesaponin G2 and glycyrrhizic acid in the process samples were determined by high performance liquid chromatography(HPLC). Then principal component analysis(PCA), partial least squares-discriminant analysis(PLS-DA) and Spearman correlation analysis were used for clustering, discrimination and correlation analysis of the appearance color, moisture, extract and the contents of six internal components. Based on artificial neural network and random forest algorithm, the prediction model of processing degree of sf-GRR was established. On this basis, based on the five principles of quality marker(Q-Maker), explore the monitoring Q-Maker of sf-GRR. ResultsThe color of Glycyrrhizae Radix et Rhizoma deepened after stir-frying, and the appearance color of the sample changed from light yellow to dark yellow during processing. During the stir-frying process, the moisture content showed a decreasing trend with the extension of processing time, while the extract content showed an increasing trend with the extension of processing time. After stir-frying, the contents of liquiritin apioside, liquiritin and licoricesaponin G2 showed an overall decreasing trend, while the contents of isoliquiritin apioside and isoliquiritin increased, and the content of glycyrrhizic acid increased slightly. The correlation analysis showed that moisture was positively correlated with brightness(L*) and red/green value(a*), and negatively correlated with yellow/blue value(b*) and total color difference(E*ab). Isoliquiritin apioside and isoliquiritin had negative correlation with L* and a*, and positive correlation with b* and E*ab. The processing process of sf-GRR could be divided into two stages of the early stage(0-14 min) and the late stage(15-17 min), and could be divided into three stages of the early stage(0-6 min), the middle stage(7-14 min) and the late stage(15-17 min) by combining the moisture, extract, the contents of 6 components and color values. Based on artificial neural network analysis and random forest algorithm, isoliquiritin apioside, isoliquiritin, liquiritin and glycyrrhizic acid were selected as monitoring markers for sf-GRR. ConclusionBased on the analysis of the exterior-interior indicators of process samples of sf-GRR, this paper ultimately identifies four processing monitoring markers, which can provide a basis for optimizing the processing technology of sf-GRR.
9.Analysis of plasma metabonomic characteristics of type 2 diabetes mellitus patients with turbid toxin accumulation syndrome
Ziqi ZHAO ; Pai PANG ; Yue REN ; Bin WANG ; Yuntao MA ; Qianjing YANG ; Shentao WU
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):34-42
Objective:
To explore the plasma metabonomic characteristics of patients with type 2 diabetes mellitus and turbid toxin accumulation syndrome.
Methods:
One hundred and three patients with type 2 diabetes mellitus and turbid toxin accumulation syndrome were enrolled from November 2023 to February 2024 in the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and 54 healthy individuals were recruited. The general data of the two groups were analyzed, and the plasma metabolite content was detected using ultra-high performance liquid chromatography-Orbitrap mass spectrometry. Construct an orthogonal partial least squares discriminant analysis model to screen metabolites with significant intergroup changes. The variable importance in projection≥ 1, |log2FC|>1, and P<0.05 were used as the criteria for the screening of differential metabolites. Annotate differential metabolites using internal databases and the human metabolome database, and perform pathway analysis using MetaboAnalyst website.
Results:
There was no statistically significant difference in gender and age between the two groups.Seventeen potential differential metabolites were identified. The D-4′-phosphopantothenate, 2, 6-dichloroindophenol, 4-methylphenol, hypoxanthine, 11, 12-epoxyeicosatrienoic acids, oleamide, 3-phenyllactic acid contents were higher in patients with type 2 diabetes mellitus and turbid toxin accumulation syndrome than in healthy individuals(P<0.05); 3-anisic acid, 3-iodo-octadecanoic acid, mebendazole, β-alanine, citric acid, trans-aconitic acid, geranyl diphosphate, lysophosphatidylcholine(18∶2), phosphatidylethanolamine(18∶1), and caprolactam contents were lower in patients with type 2 diabetes mellitus and turbid toxin accumulation syndrome than in healthy individuals(P<0.05). Ten metabolic pathways were identified, including the key metabolic pantothenate and coenzyme A biosynthesis pathways.
Conclusion
Metabolic differences were observed between patients with type 2 diabetes mellitus and turbid toxin accumulation syndrome and healthy individuals, and the underlying mechanism may involve the pantothenate and coenzyme A biosynthesis pathways, jointly mediated by D-4′-phosphopantothenate and β-alanine.
10.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.


Result Analysis
Print
Save
E-mail