1.Effect of Quercetin on Cuproptosis in Rheumatoid Arthritis Rats and Its Mechanism via SLC31A1/FDX1 Pathway
Haoruo YANG ; Qiuai KOU ; Junhua REN ; Guo YUAN ; Bin YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):121-130
ObjectiveTo observe the influence and therapeutic effect of quercetin on cuproptosis in rheumatoid arthritis rats and to explore its possible mechanism based on the solute carrier family 31 member 1 (SLC31A1)/ferredoxin 1 (FDX1) pathway. MethodsSixty male SD rats were divided into six groups: A control group, a model group, high- and low-dose quercetin groups (150 and 50 mg·kg-1), a cuproptosis inhibitor (tetrathiomolybdate, TTM) group (10 mg·kg-1), and a methotrexate group (2 mg·kg-1), 10 rats in each group. Except for the control group, the model of rheumatoid arthritis (CIA) rats was established by type Ⅱ collagen induction method. After successful modeling, each drug group was intervened according to the corresponding dose of drugs, and the control group and the model group were given the same amount of normal saline by gavage, once a day, which lasted for 4 weeks. The swelling degree of rats' feet was observed, and the clinical arthritis scores were determined. The levels of serum rheumatoid factor (RF), matrix metalloproteinase-3 (MMP-3), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-10 (IL-10), and ceruloplasmin (Cp) were detected by enzyme-linked immunosorbent assay (ELISA). The content of copper ion (Cu), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) in joint tissue was detected. Hematoxylin-eosin (HE) staining was used to observe the pathological changes of joint tissue. The levels of reactive oxygen species (ROS) and dihydrolipoic acid transacetylase (DLAT) were detected by immunofluorescence (IF). The protein and mRNA expression of SLC31A1, FDX1, lipoic acid synthase (LIAS), heat shock protein 70 (HSP70), pyruvate dehydrogenase E1 subunit β (PDHB), and copper transporting P-type ATPase β (ATP7B) was detected by immunohistochemistry (IHC) and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultsCompared to the control group, the model group exhibited joint swelling and deformity, significantly increased clinical arthritis scores, obvious bone destruction, synovial hyperplasia, and inflammatory cell infiltration in joint tissue. In addition, the serum levels of RF, MMP-3, TNF-α, IL-1β, and Cp showed significant elevation, while the level of IL-10 was significantly reduced. The levels of Cu, MDA, ROS, and DLAT in joint tissue were markedly increased, whereas SOD and GSH content was significantly decreased. The protein and mRNA expression of SLC31A1 and HSP70 was significantly up-regulated, while the protein and mRNA expression of FDX1, LIAS, PDHB, and ATP7B was significantly down-regulated (P<0.01). Compared to the model group, each treatment group exhibited varying degrees of improvement in joint swelling and deformation as well as clinical arthritis scores in rats. Additionally, there was a reduction in joint bone destruction, inflammatory cell infiltration, and synovial hyperplasia in rats. Furthermore, the serum levels of RF, MMP-3, TNF-α, IL-1β, and Cp significantly decreased, while the level of IL-10 increased significantly. In joint tissue, the levels of Cu, MDA, ROS, and DLAT showed significant decreases, while SOD and GSH content exhibited significant increases. The protein and mRNA expression of SLC31A1 and HSP70 was down-regulated, while the protein and mRNA expression of FDX1, LIAS, PDHB, and ATP7B was up-regulated (P<0.05). ConclusionQuercetin effectively reduces synovial hyperplasia and inflammatory infiltration in rats with rheumatoid arthritis, thereby alleviating pathological damage to joint tissue. This effect may be attributed to the blockade of the SLC31A1/FDX1 signaling pathway activation and inhibition of excessive cuproptosis.
2.Mechanism of Ferroptosis in Regulating Chronic Heart Failure and Traditional Chinese Medicine Prevention and Treatment Based on Qi Deficiency and Stagnation: A Review
Ziyang YUAN ; Yan ZHANG ; Wei ZHANG ; Yaqin WANG ; Wenjun MAO ; Guo YANG ; Xuewei WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):248-255
Chronic heart failure (CHF) is the final stage of cardiovascular diseases. It is a complex syndrome, with dyspnea and edema as the main clinical manifestations, and it is characterized by complex disease conditions, difficult cure, and high mortality. Ferroptosis, a new type of programmed cell death, is different from other types of programmed cell death. Ferroptosis is iron-dependent, accompanied by lipid peroxide accumulation and mitochondrial shrinkage, becoming a hot research topic. Studies have confirmed that ferroptosis plays a key role in the occurrence and development of CHF. The regulation of ferroptosis may become a potential target for the treatment of CHF in the future. The theory of Qi deficiency and stagnation refers to the pathological state of original Qi deficiency and abnormal transportation and distribution of Qi, blood, and body fluid, which has guiding significance for revealing the pathogenesis evolution of some chronic diseases. We believe that Qi deficiency and stagnation is a summary of the pathogenesis of ferroptosis in CHF. Deficiency of Qi (heart Qi) is the root cause of CHF, and stagnation (phlegm turbidity and blood stasis) is the branch of this disease. The two influence each other in a vicious circle to promote the development of this disease. Traditional Chinese medicine (TCM) plays an important role in the treatment of CHF, improving the prognosis and quality of life of CHF patients. This paper explores the correlation between the theory of Qi deficiency and stagnation and the mechanism of ferroptosis in CHF. Furthermore, this paper reviews the mechanism of Chinese medicines and compound prescriptions in preventing and treating CHF by regulating ferroptosis according to the principles of replenishing Qi and dredging to remove stagnation, aiming to provide new ideas and methods for the treatment of CHF with TCM.
3.Simultaneous TAVI and McKeown for esophageal cancer with severe aortic regurgitation: A case report
Liang CHENG ; Lulu LIU ; Xin XIAO ; Lin LIN ; Mei YANG ; Jingxiu FAN ; Hai YU ; Longqi CHEN ; Yingqiang GUO ; Yong YUAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):277-280
A 71-year-old male presented with esophageal cancer and severe aortic valve regurgitation. Treatment strategies for such patients are controversial. Considering the risks of cardiopulmonary bypass and potential esophageal cancer metastasis, we successfully performed transcatheter aortic valve implantation and minimally invasive three-incision thoracolaparoscopy combined with radical resection of esophageal cancer (McKeown) simultaneously in the elderly patient who did not require neoadjuvant treatment. This dual minimally invasive procedure took 6 hours and the patient recovered smoothly without any surgical complications.
4.Optimization and Mechanism Exploration of Tusizi Prescription for Ovarian Reserve Function Based on Uniform Design Method
Yuan LI ; Hanqian DU ; Jiashan LI ; Li GUO ; Zehui LI ; Na LIN ; Ying XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):53-62
ObjectiveTo optimize Tusizi prescription for ovarian reserve function based on the uniform design method combined with in vitro experiments and explore the underlying mechanisms of this prescription. MethodsThe uniform design method was adopted to design a 5-factor 11-level experiment on the water extract of Tusizi prescription. The cell-counting kit-8 (CCK-8) assay was employed to measure the viability of human ovarian granulosa cells (KGN cells) treated with Tusizi prescription extracts 1-11, and multivariate regression analysis was performed to determine the optimal herb ratio in this prescription. The potential targets of active ingredients in the prescription were retrieved from traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and encyclopedia of traditional Chinese medicine (ETCM). The common targets shared by Tusizi prescription and diminished ovarian reserve (DOR) were selected and imported into search tool for the retrieval of interacting genes/proteins (STRING) to construct a protein-protein interaction (PPI) network and into gene function annotation database (DAVID) for gene ontology (GO) analysis. The CCK-8 assay was used to measure the viability of ovarian germline stem cells treated with hyperoside. The CCK-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, terminal-deoxynucleoitidyl transferase mediated nick-end labeling (TUNEL), and enzyme-linked immunosorbent assay (ELISA) were employed to examine the proliferation, apoptosis, and estradiol (E2) secretion of KGN cells treated with the water extract 11 of Tusizi prescription (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 4∶4∶2∶1∶1) and the optimal prescription screened by uniform design. On this basis, the optimal prescription composition for maximizing the effect on ovarian reserve function was determined and preliminary insights into the underlying mechanisms of this prescription were gained. ResultsA total of 147 common targets were obtained from 278 targets of Tusizi prescription and 1 721 targets of DOR. GO analysis revealed 194 biological processes, primarily involving cellular responses to exogenous compound stimuli, negative regulation of apoptotic process, and positive regulation of cell proliferation. It identified 84 cellular components, including cell membrane, mitochondria, and neuronal cell body, as well as 144 molecular functions such as enzyme binding, estrogen response element binding, and nuclear estrogen receptor binding. The multivariate regression analysis revealed that when Tusizi prescription was composed of Cuscutae Semen, Lycii Fructus, Dioscoreae Rhizoma, Poria, and Nelumbinis Semen in a ratio of 27∶30∶17∶12∶14, the water extract of Tusizi prescription had the best effect of enhancing the viability of KGN cells. CCK-8 results showed that compared with the normal group, the hyperoside group demonstrated increased viability of ovarian germline stem cells (P<0.01). The CCK-8, EdU, and ELISA results showed that compared with the normal group, the optimal prescription screened by uniform design and the water extract 11 of Tusizi prescription increased the proliferation and reduced the apoptosis of KGN cells (P<0.05, P<0.01). ELISA results showed that compared with the normal group, the water extract 11 of Tusizi prescription promoted the E2 secretion of KGN cells (P<0.05), while the optimal prescription screened by uniform design had no significant effect on the E2 secretion. ConclusionBoth the water extract 11 of Tusizi prescription (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 4∶4∶2∶1∶1) and the optimal prescription screened by uniform design (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 27∶30∶17∶12∶14) can improve the ovarian reserve function, and the former has better effect. Tusizi prescription can modulate biological processes (such as cell proliferation and apoptosis) and molecular functions (such as enzyme binding and estrogen response element binding) through active components like hyperoside to promote the proliferation and E2 secretion and inhibit the apoptosis of KGN cells, thereby protecting the ovarian reserve function.
5.Optimization and Mechanism Exploration of Tusizi Prescription for Ovarian Reserve Function Based on Uniform Design Method
Yuan LI ; Hanqian DU ; Jiashan LI ; Li GUO ; Zehui LI ; Na LIN ; Ying XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):53-62
ObjectiveTo optimize Tusizi prescription for ovarian reserve function based on the uniform design method combined with in vitro experiments and explore the underlying mechanisms of this prescription. MethodsThe uniform design method was adopted to design a 5-factor 11-level experiment on the water extract of Tusizi prescription. The cell-counting kit-8 (CCK-8) assay was employed to measure the viability of human ovarian granulosa cells (KGN cells) treated with Tusizi prescription extracts 1-11, and multivariate regression analysis was performed to determine the optimal herb ratio in this prescription. The potential targets of active ingredients in the prescription were retrieved from traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and encyclopedia of traditional Chinese medicine (ETCM). The common targets shared by Tusizi prescription and diminished ovarian reserve (DOR) were selected and imported into search tool for the retrieval of interacting genes/proteins (STRING) to construct a protein-protein interaction (PPI) network and into gene function annotation database (DAVID) for gene ontology (GO) analysis. The CCK-8 assay was used to measure the viability of ovarian germline stem cells treated with hyperoside. The CCK-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, terminal-deoxynucleoitidyl transferase mediated nick-end labeling (TUNEL), and enzyme-linked immunosorbent assay (ELISA) were employed to examine the proliferation, apoptosis, and estradiol (E2) secretion of KGN cells treated with the water extract 11 of Tusizi prescription (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 4∶4∶2∶1∶1) and the optimal prescription screened by uniform design. On this basis, the optimal prescription composition for maximizing the effect on ovarian reserve function was determined and preliminary insights into the underlying mechanisms of this prescription were gained. ResultsA total of 147 common targets were obtained from 278 targets of Tusizi prescription and 1 721 targets of DOR. GO analysis revealed 194 biological processes, primarily involving cellular responses to exogenous compound stimuli, negative regulation of apoptotic process, and positive regulation of cell proliferation. It identified 84 cellular components, including cell membrane, mitochondria, and neuronal cell body, as well as 144 molecular functions such as enzyme binding, estrogen response element binding, and nuclear estrogen receptor binding. The multivariate regression analysis revealed that when Tusizi prescription was composed of Cuscutae Semen, Lycii Fructus, Dioscoreae Rhizoma, Poria, and Nelumbinis Semen in a ratio of 27∶30∶17∶12∶14, the water extract of Tusizi prescription had the best effect of enhancing the viability of KGN cells. CCK-8 results showed that compared with the normal group, the hyperoside group demonstrated increased viability of ovarian germline stem cells (P<0.01). The CCK-8, EdU, and ELISA results showed that compared with the normal group, the optimal prescription screened by uniform design and the water extract 11 of Tusizi prescription increased the proliferation and reduced the apoptosis of KGN cells (P<0.05, P<0.01). ELISA results showed that compared with the normal group, the water extract 11 of Tusizi prescription promoted the E2 secretion of KGN cells (P<0.05), while the optimal prescription screened by uniform design had no significant effect on the E2 secretion. ConclusionBoth the water extract 11 of Tusizi prescription (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 4∶4∶2∶1∶1) and the optimal prescription screened by uniform design (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 27∶30∶17∶12∶14) can improve the ovarian reserve function, and the former has better effect. Tusizi prescription can modulate biological processes (such as cell proliferation and apoptosis) and molecular functions (such as enzyme binding and estrogen response element binding) through active components like hyperoside to promote the proliferation and E2 secretion and inhibit the apoptosis of KGN cells, thereby protecting the ovarian reserve function.
6.Nucleic Acid-driven Protein Degradation: Frontiers of Lysosomal Targeted Degradation Technology
Han YIN ; Yu LI ; Yu-Chuan FAN ; Shuai GUO ; Yuan-Yu HUANG ; Yong LI ; Yu-Hua WENG
Progress in Biochemistry and Biophysics 2025;52(1):5-19
Distinct from the complementary inhibition mechanism through binding to the target with three-dimensional conformation of small molecule inhibitors, targeted protein degradation technology takes tremendous advantage of endogenous protein degradation pathway inside cells to degrade plenty of “undruggable” target proteins, which provides a novel route for the treatment of many serious diseases, mainly including proteolysis-targeting chimeras, lysosome-targeting chimeras, autophagy-targeting chimeras, antibody-based proteolysis-targeting chimeras, etc. Unlike proteolysis-targeting chimeras first found in 2001, which rely on ubiquitin-proteasome system to mainly degrade intracellular proteins of interest, lysosome-targeting chimeras identified in 2020, which was act as the fastly developing technology, utilize cellular lysosomal pathway through endocytosis mediated by lysosome-targeting receptor to degrade both extracellular and membrane proteins. As an emerging biomedical technology, nucleic acid-driven lysosome-targeting chimeras utilize nucleic acids as certain components of chimera molecule to replace with ligand to lysosome-targeting receptor or protein of interest, exhibiting broad application prospects and potential clinical value in disease treatment and drug development. This review mainly introduced present progress of nucleic acid-driven lysosome-targeting chimeras technology, including its basic composition, its advantages compared with antibody or glycopeptide-based lysosome-targeting chimeras, and focused on its chief application, in terms of the type of lysosome-targeting receptors. Most research about the development of nucleic acid-driven lysosome-targeting chimeras focused on those which utilized cation-independent mannose-6-phosphonate receptor as the lysosome-targeting receptor. Both mannose-6-phosphonate-modified glycopeptide and nucleic aptamer targeting cation-independent mannose-6-phosphonate receptor, even double-stranded DNA molecule moiety can be taken advantage as the ligand to lysosome-targeting receptor. The same as classical lysosome-targeting chimeras, asialoglycoprotein receptor can also be used for advance of nucleic acid-driven lysosome-targeting chimeras. Another new-found lysosome-targeting receptor, scavenger receptor, can bind dendritic DNA molecules to mediate cellular internalization of complex and lysosomal degradation of target protein, suggesting the successful application of scavenger receptor-mediated nucleic acid-driven lysosome-targeting chimeras. In addition, this review briefly overviewed the history of lysosome-targeting chimeras, including first-generation and second-generation lysosome-targeting chimeras through cation-independent mannose-6-phosphonate receptor-mediated and asialoglycoprotein receptor-mediated endocytosis respectively, so that a clear timeline can be presented for the advance of chimera technique. Meantime, current deficiency and challenge of lysosome-targeting chimeras was also mentioned to give some direction for deep progress of lysosome-targeting chimeras. Finally, according to faulty lysosomal degradation efficiency, more cellular mechanism where lysosome-targeting chimeras perform degradation of protein of interest need to be deeply explored. In view of current progress and direction of nucleic acid-driven lysosome-targeting chimeras, we discussed its current challenges and development direction in the future. Stability of natural nucleic acid molecule and optimized chimera construction have a great influence on the biological function of lysosome-targeting chimeras. Discovery of novel lysosome-targeting receptors and nucleic aptamer with higher affinity to the target will greatly facilitate profound advance of chimera technique. In summary, nucleic acid-driven lysosome-targeting chimeras have many superiorities, such as lower immunogenicity, expedient synthesis of chimera molecules and so on, in contrast to classical lysosome-targeting chimeras, making it more valuable. Also, the chimera technology provides new ideas and methods for biomedical research, drug development and clinical treatment, and can be used more widely through further research and optimization.
7.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
8.Study on the synergistic antifungal effects of caspofungin acetate loaded glyceryl monostearate nanoparticle on Candida albicans
Lingyi GUO ; Yanchao LIU ; Lu GAO ; Ruiyao LIU ; Quanzhen LYU ; Yuan YU
Journal of Pharmaceutical Practice and Service 2025;43(3):136-142
Objective To prepare and characterize caspofungin acetate-loaded solid lipid nanoparticles using glycerol monostearate (CAS-SLNs), and investigate the antifungal effect of potentiation on Candida albicans in vitro and in vivo. Methods A high performance liquid chromatography method was established for the determination of caspofungin acetate (CAS). CAS-SLNs were prepared by the melt-emulsification method and characterized. The minimum inhibitory concentration (MIC) and the inhibitory effect on Candida albicans biofilm were determined. A systemic infection model of Candida albicans was established in mice, and the growth curve models for body weight and fungal load of kidneys of the animals were investigated after intravenous infection. Results The retention time of CAS was 6.8 min. The calibration curve showed good linearity, and the precision and stability met the requirements of the assay. Transmission electron microscopy revealed that CAS-SLNs were spherical, with a particle size of (135.97±1.73) nm. The Zeta potential was (19.33±0.37) mV, drug loading was (7.55±0.68)%, and encapsulation efficiency was (67.71±1.74)%. CAS-SLNs showed significant in vitro antifungal inhibition with a MIC of 9.78×10−4 g/ml, which was significantly better than CAS group and the physical mixture group of CAS and GMS, as well as the same biofilm inhibition was observed (P<0.001). Pharmacodynamic studies demonstrated that CAS-SLNs maintained stable body weight gain compared to the control (P<0.01) and CAS groups in Candida albicans invasive infection model, and that CAS-SLNs significantly reduced renal fungal burden load relative to the CAS group (P<0.05). In vivo study revealed that a stable body weight was maintained in CAS-SLNs group compared to the control group (P<0.01) in Candida albicans invasive infection model. CAS-SLNs also significantly reduced renal fungal load compared to the CAS group (P<0.05). Conclusion CAS-SLNs significantly enhanced the antifungal effects of CAS in vitro and in vivo, which provided a valuable insight for the research of new formulation of CAS.
9.Research hotspots and trends of emergency response to public health emergencies in China
Meiru GUO ; Cuiping LEI ; Ximing FU ; Huifang CHEN ; Jianbiao CAO ; Long YUAN
Chinese Journal of Radiological Health 2025;34(1):61-66
Objective Emergency response to public health emergencies constitutes a vital component of the modernization of national governance systems and capacities, directly impacting national security, social stability, and public health. This study aims to analyze the key issues and research hotspots in the field of emergency response to public health emergencies, providing theoretical foundations and practical guidance for formulating scientific and effective emergency strategies and policies. Ultimately, it seeks to enhance the nation’s capability to respond to public health emergencies and safeguard public health. Methods Using core journals indexed in the China National Knowledge Infrastructure (CNKI) database as the data source,
10.A Randomized Controlled Trial of Stone Needle Thermocompression and Massage for Treating Chronic Musculoskeletal Pain in the Shoulder and Back:A Secondary Analysis of Muscle Elasticity as a Mediator
Jingjing QIAN ; Yuanjing LI ; Li LI ; Yawei XI ; Ying WANG ; Cuihua GUO ; Jiayan ZHOU ; Yaxuan SUN ; Shu LIU ; Guangjing YANG ; Na YUAN ; Xiaofang YANG
Journal of Traditional Chinese Medicine 2025;66(9):935-940
ObjectiveTo evaluate the effectiveness of stone needle thermocompression and massage compared to flurbiprofen gel patch in relieving chronic musculoskeletal pain in the shoulder and back, and to explore the potential mediating mechanism through muscle elasticity. MethodsA total of 120 patients with chronic musculoskeletal pain in the shoulder and back were randomly assigned to either stone needle group or flurbiprofen group, with 60 patients in each. The stone needle group received stone needle thermocompression and massage for 30 minutes, three times per week; the flurbiprofen group received flurbiprofen gel patch twice daily. Both groups were treated for 2 weeks. Pain improvement, as the primary outcome, was assessed using the Global Pain Scale (GPS) at baseline, after 2 weeks of treatment, and again 2 weeks post-treatment. To explore potential mechanisms, a mediator analysis was conducted by measuring changes in superficial and deep muscle elasticity using musculoskeletal ultrasound at baseline and after the 2-week treatment period. ResultsThe stone needle group showed significantly greater pain relief than the flurbiprofen group 2 weeks post-treatment. After adjusting for confounders related to pain duration, the between-group mean difference was -8.8 [95% CI (-18.2, -0.7), P<0.05]. Part of the therapeutic effect was mediated by changes in deep muscle elasticity, with a mediation effect size of -1.5 [95% CI (-2.0, -0.9), P = 0.024], accounting for 17.9% of the total effect. ConclusionStone needle thermocompression and massage can effectively relieve chronic musculoskeletal pain in the shoulder and back, partly through a mediating effect of improved deep muscle elasticity.

Result Analysis
Print
Save
E-mail