1.Empirical study of input, output, outcome and impact of community-based rehabilitation stations
Xiayao CHEN ; Ying DONG ; Xue DONG ; Zhongxiang MI ; Jun CHENG ; Aimin ZHANG ; Didi LU ; Jun WANG ; Jude LIU ; Qianmo AN ; Hui GUO ; Xiaochen LIU ; Zefeng YU
Chinese Journal of Rehabilitation Theory and Practice 2026;32(1):83-89
ObjectiveTo investigate the present situation of input, output, outcome and impact of all registered community-based rehabilitation stations in Inner Mongolia in China, and analyze how the input predict the output, outcome and impact. MethodsFrom March 1st to April 30th, 2025, a questionnaire survey was conducted on all registered community-based rehabilitation stations in Inner Mongolia, covering four dimensions: input, output, outcome and impact. A total of 1 365 questionnaires were distributed. The input included four items: laws and policies, human resources, equipment and facilities, and rehabilitation information management. The output included two items: technical paths and benefits/effectiveness. The outcome included three items: coverage rates, rehabilitation interventions and functional results. The impact included two items: health and sustainability. Each item contained several questions, all of which were described in a positive way. Each question was scored from one to five. A lower score indicated that the situation of the community-based rehabilitation station was more in line with the content described in the question. Regression analysis was performed using the total score of each item of input dimension as independent variables, and the total scores of the output, outcome and impact dimensions as dependent variables. ResultsA total of 1 262 valid questionnaires were collected. The mean values of input, output, outcome and impact of community-based rehabilitation stations were 1.827 to 1.904, with coefficient of variation of 45.892% to 49.239%. The regression analysis showed that, rehabilitation information management, human resources, and laws and policies significantly predicted the output dimension (R² = 0.910, P < 0.001). Meanwhile, all four items in the input dimension predicted both the outcome (R² = 0.850, P < 0.001) and impact dimensions (R² = 0.833, P < 0.001). ConclusionInput, output, outcome and impact of the community-based rehabilitation stations in Inner Mongolia were generally in line with the content of the questions, although some imbalances were observed. Additionally, the input of community-based rehabilitation stations could significantly predict their output, outcome and impact.
2.Application of CRISPR/Cas System in Precision Medicine for Triple-negative Breast Cancer
Hui-Ling LIN ; Yu-Xin OUYANG ; Wan-Ying TANG ; Mi HU ; Mao PENG ; Ping-Ping HE ; Xin-Ping OUYANG
Progress in Biochemistry and Biophysics 2025;52(2):279-289
Triple-negative breast cancer (TNBC) represents a distinctive subtype, characterized by the absence of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 (HER2). Due to its high inter-tumor and intra-tumor heterogeneity, TNBC poses significant chanllenges for personalized diagnosis and treatment. The advant of clustered regular interspaced short palindromic repeats (CRISPR) technology has profoundly enhanced our understanding of the structure and function of the TNBC genome, providing a powerful tool for investigating the occurrence and development of diseases. This review focuses on the application of CRISPR/Cas technology in the personalized diagnosis and treatment of TNBC. We begin by discussing the unique attributes of TNBC and the limitations of current diagnostic and treatment approaches: conventional diagnostic methods provide limited insights into TNBC, while traditional chemotherapy drugs are often associated with low efficacy and severe side effects. The CRISPR/Cas system, which activates Cas enzymes through complementary guide RNAs (gRNAs) to selectively degrade specific nucleic acids, has emerged as a robust tool for TNBC research. This technology enables precise gene editing, allowing for a deeper understanding of TNBC heterogeneity by marking and tracking diverse cell clones. Additionally, CRISPR facilitates high-throughput screening to promptly identify genes involved in TNBC growth, metastasis, and drug resistance, thus revealing new therapeutic targets and strategies. In TNBC diagnostics, CRISPR/Cas was applied to develop molecular diagnostic systems based on Cas9, Cas12, and Cas13, each employing distinct detection principles. These systems can sensitively and specifically detect a variety of TNBC biomarkers, including cell-specific DNA/RNA and circulating tumor DNA (ctDNA). In the realm of precision therapy, CRISPR/Cas has been utilized to identify key genes implicated in TNBC progression and treatment resistance. CRISPR-based screening has uncovered potential therapeutic targets, while its gene-editing capabilities have facilitated the development of combination therapies with traditional chemotherapy drugs, enhancing their efficacy. Despite its promise, the clinical translation of CRISPR/Cas technology remains in its early stages. Several clinical trials are underway to assess its safety and efficacy in the treatment of various genetic diseases and cancers. Challenges such as off-target effects, editing efficiency, and delivery methods remain to be addressed. The integration of CRISPR/Cas with other technologies, such as 3D cell culture systems, human induced pluripotent stem cells (hiPSCs), and artificial intelligence (AI), is expected to further advance precision medicine for TNBC. These technological convergences can offer deeper insights into disease mechanisms and facilitate the development of personalized treatment strategies. In conclusion, the CRISPR/Cas system holds immense potential in the precise diagnosis and treatment of TNBC. As the technology progresses and becomes more costs-effective, its clinical relevance will grow, and the translation of CRISPR/Cas system data into clinical applications will pave the way for optimal diagnosis and treatment strategies for TNBC patients. However, technical hurdles and ethical considerations require ongoing research and regulation to ensure safety and efficacy.
3.Experimental study on Jianpi Qutan Formula regulating M1/M2 macrophage polarization to improve atherosclerosis.
Xiao-Meng HAN ; Yue LIU ; Yu ZHAO ; Mao-Sheng YU ; Mi TAN
China Journal of Chinese Materia Medica 2025;50(6):1610-1617
To investigate the mechanism of Jianpi Qutan Formula in regulating the balance between classically activated macrophages(M1) and alternatively activated macrophages(M2) in atherosclerotic plaques through phosphorylation and activation of the signal transducer and activator of transcription 6(STAT6), thereby reducing inflammation, increasing plaque stability, and exerting anti-atherosclerosis(AS) effects. An AS model was established by feeding apolipoprotein E(ApoE)~(-/-) mice with atherosclerotic chow for 8 weeks. The ApoE~(-/-) mice were randomly divided into a model group(Mod group), a Jianpi Qutan Formula group(JPQT group, 8.97 g·kg~(-1)), and a Atorvastatin Calcium Tablets group(ATO group, 1.3 mg·kg~(-1)) according to a random table method, with 10 mice in each group. Additionally, 10 male C57BL/6J mice of the same age, fed with a normal diet, were set as the control group(Con group). The JPQT and ATO groups received their respective treatments via oral gavage for 8 consecutive weeks, while the Con and Mod groups were administered an equivalent volume of saline. Body weight was continuously monitored, and after blood collection, total cholesterol(TC) and triglyceride(TG) levels in the serum of each group were compared. Hematoxylin-eosin(HE) staining and oil red O staining were used to observe plaque formation in aortic tissue. Enzyme-linked immunosorbent assay(ELISA) was employed to detect the expression levels of pro-inflammatory cytokines interleukin(IL)-6 and IL-12, as well as the anti-inflammatory cytokine IL-10. Immunofluorescence was used to detect the positive expression of aortic cluster of differentiation(CD)86 and CD206. Western blot analysis was conducted to detect the protein expression levels of aortic inducible nitric oxide synthase(iNOS), arginase 1(Arg1), STAT6, and p-STAT6. Compared to the Con group, the Mod group exhibited increased body weight and blood lipid levels, disordered aortic structure, significant AS plaque formation accompanied by extensive lipid deposition, and elevated serum levels of pro-inflammatory cytokines IL-6 and IL-12, as well as elevated CD86 and iNOS protein levels. In contrast, the serum levels of the anti-inflammatory cytokine IL-10, along with the protein expression levels of CD206, Arg1, and p-STAT6/STAT6, were reduced. Compared to the Mod group, the drug intervention groups showed improvements in body weight and lipid metabolism, with a more significant improvement in aortic structure, reduced lipid accumulation, decreased serum levels of IL-6 and IL-12, and lower CD86 and iNOS protein levels. Meanwhile, levels of IL-10, CD206, Arg1, and p-STAT6/STAT6 increased. Jianpi Qutan Formula improves AS by regulating the imbalance in M1/M2 macrophage polarization, and its mechanism is likely closely related to the activation of the STAT6 signaling pathway.
Animals
;
Atherosclerosis/metabolism*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Macrophages/cytology*
;
Mice, Inbred C57BL
;
STAT6 Transcription Factor/immunology*
;
Humans
;
Apolipoproteins E/genetics*
;
Interleukin-6/immunology*
4.Artificial intelligence-driven multi-omics approaches in Alzheimer's disease: Progress, challenges, and future directions.
Fang REN ; Jing WEI ; Qingxin CHEN ; Mengling HU ; Lu YU ; Jianing MI ; Xiaogang ZHOU ; Dalian QIN ; Jianming WU ; Anguo WU
Acta Pharmaceutica Sinica B 2025;15(9):4327-4385
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss, with few effective treatments currently available. The multifactorial nature of AD, shaped by genetic, environmental, and biological factors, complicates both research and clinical management. Recent advances in artificial intelligence (AI) and multi-omics technologies provide new opportunities to elucidate the molecular mechanisms of AD and identify early biomarkers for diagnosis and prognosis. AI-driven approaches such as machine learning, deep learning, and network-based models have enabled the integration of large-scale genomic, transcriptomic, proteomic, metabolomic, and microbiomic datasets. These efforts have facilitated the discovery of novel molecular signatures and therapeutic targets. Methods including deep belief networks and joint deep semi-non-negative matrix factorization have contributed to improvements in disease classification and patient stratification. However, ongoing challenges remain. These include data heterogeneity, limited interpretability of complex models, a lack of large and diverse datasets, and insufficient clinical validation. The absence of standardized multi-omics data processing methods further restricts progress. This review systematically summarizes recent advances in AI-driven multi-omics research in AD, highlighting achievements in early diagnosis and biomarker discovery while discussing limitations and future directions needed to advance these approaches toward clinical application.
5.Evolution-guided design of mini-protein for high-contrast in vivo imaging.
Nongyu HUANG ; Yang CAO ; Guangjun XIONG ; Suwen CHEN ; Juan CHENG ; Yifan ZHOU ; Chengxin ZHANG ; Xiaoqiong WEI ; Wenling WU ; Yawen HU ; Pei ZHOU ; Guolin LI ; Fulei ZHAO ; Fanlian ZENG ; Xiaoyan WANG ; Jiadong YU ; Chengcheng YUE ; Xinai CUI ; Kaijun CUI ; Huawei CAI ; Yuquan WEI ; Yang ZHANG ; Jiong LI
Acta Pharmaceutica Sinica B 2025;15(10):5327-5345
Traditional development of small protein scaffolds has relied on display technologies and mutation-based engineering, which limit sequence and functional diversity, thereby constraining their therapeutic and application potential. Protein design tools have significantly advanced the creation of novel protein sequences, structures, and functions. However, further improvements in design strategies are still needed to more efficiently optimize the functional performance of protein-based drugs and enhance their druggability. Here, we extended an evolution-based design protocol to create a novel minibinder, BindHer, against the human epidermal growth factor receptor 2 (HER2). It not only exhibits super stability and binding selectivity but also demonstrates remarkable properties in tissue specificity. Radiolabeling experiments with 99mTc, 68Ga, and 18F revealed that BindHer efficiently targets tumors in HER2-positive breast cancer mouse models, with minimal nonspecific liver absorption, outperforming scaffolds designed through traditional engineering. These findings highlight a new rational approach to automated protein design, offering significant potential for large-scale applications in therapeutic mini-protein development.
6.Urethral Sparing versus Trans-Vesical Robot-Assisted Simple Prostatectomy:A Comparative Analysis of Perioperative, Postoperative Outcomes, and Ejaculation Preservation
Yu Seob SHIN ; Shang Weon PAK ; Wonku HWANG ; Seon Beom JO ; Jong Wook KIM ; Mi Mi OH ; Hong Seok PARK ; Du Geon MOON ; Sun Tae AHN
The World Journal of Men's Health 2025;43(2):387-395
Purpose:
To compare the perioperative and postoperative outcomes between traditional trans-vesical robot-assisted simple prostatectomy (TV-RASP) and the newly introduced urethral-sparing (US) RASP.
Materials and Methods:
We retrospectively reviewed 42 patients who underwent TV-RASP (n=22) or US-RASP (n=20) performed by two experienced surgeons at two tertiary centers. Perioperative outcomes including operation time, estimated blood loss, length of hospital stay, and catheterization time were assessed. Postoperative outcomes were evaluated using the International Prostate Symptom Score (IPSS), quality of life (QoL), uroflowmetry parameters, Male Sexual Health Questionnaire-Ejaculation Dysfunction-Short Form (MSHQ-EjD-SF) scores, and maintenance of anterograde ejaculation.
Results:
This study analyzed 22 and 20 patients who underwent TV-RASP and US-RASP, respectively. Except for the TV-RASP group being older (70.0 years) than the US-RASP group (64.5 years) (p=0.028), no differences among other baseline characteristics existed. Perioperative outcomes indicated that hospital stay and catheterization time were significantly shorter in the US-RASP group than in the TV-RASP group (p<0.001). At postoperative month 1, the median IPSS and QoL scores were significantly better in the US-RASP group than in the TV-RASP group (p=0.001 and p=0.002, respectively). However, at months 6 and 12, no significant differences were noted in IPSS, QoL, maximum flow rate, and postvoid residual urine between the two groups. Sexually active patients in the US-RASP group maintained postoperative MSHQ-EjD functional and bother scores, whereas the TV-RASP group experienced a decline. Notably, 75.0% of patients in the US-RASP group preserved antegrade ejaculation, compared to only 20.0% in the TV-RASP group (p<0.001).
Conclusions
US-RASP is not inferior to TV-RASP in terms of functional outcomes. In addition, US-RASP yielded more rapid symptom improvements and preserved antegrade ejaculation than TV-RASP. However, larger prospective studies are required to confirm these findings and to further investigate the long-term efficacy and safety of US-RASP.
7.Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery
Jeong-Kui KU ; Jung-Hoon LIM ; Jung-Ah LIM ; In-Woong UM ; Yu-Mi KIM ; Pil-Young YUN
Tissue Engineering and Regenerative Medicine 2025;22(2):261-271
Background:
Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods:
Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.
Results:
All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.
Conclusion
DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.
8.Health-Related Behaviors of Middle-Aged Cancer Survivors: A Comparative Study with Matched Non-Cancer Controls Using the Korea National Health and Nutrition Examination Survey VI–VII (2013–2018) Data
Mi Lee KIM ; Ju Ri JEONG ; Yu Ri CHOE
Korean Journal of Health Promotion 2025;25(1):20-28
Background:
Middle-aged cancer survivors lack specific health guidelines compared to young and old cancer survivors. Their increased prevalence necessitates the establishment of tailored health guidelines. This study aimed to investigate the health-related behaviors of middle-aged cancer survivors compared to those of the general population.
Methods:
This cross-sectional study analyzed 17,332 adults aged 40–65 years who participated in the sixth and seventh Korea National Health and Nutrition Examination Survey (2013–2018). Data on cancer screening, alcohol consumption, smoking, physical activity, sedentary time, and dietary management were collected via self-reported questionnaires. Propensity score matching (1:5) revealed 591 middle-aged cancer survivors and 2,955 non-cancer controls. Descriptive statistics, chi-square tests, and logistic regression analyses were conducted to compare the demographic characteristics and health-related behaviors of both groups.
Results:
Multivariate analysis revealed that middle-aged cancer survivors were significantly less likely to consume alcohol (odds ratio [OR]: 0.64; 95% confidence interval [CI]: 0.51–0.81) and smoke (OR: 0.65; 95% CI: 0.43–0.99) and more likely to engage in aerobic physical activity (OR: 1.33; 95% CI: 1.08–1.64) and practice dietary management (OR: 1.47; 95% CI: 1.17–1.84) than the non-cancer controls. However, no significant differences in cancer screening adherence and sedentary time were observed between both groups.
Conclusions
Overall, this study provides fundamental data for the development of tailored health guidelines and patient education programs for cancer survivors.
9.Diagnosis of Oral-Facial-Digital Syndrome I in a Patient with Suspected Polycystic Kidney Disease
Jiwon LEE ; Jong Eun PARK ; Sang-Woong HAN ; Mi-Yeon YU
Korean Journal of Medicine 2025;100(1):40-43
Polycystic kidney disease (PKD) typically manifests as genetic disease, which is commonly attributed to mutations in PKD genes. In this particular case, however, genetic analysis revealed that the patient’s PKD is linked to a novel, likely pathogenic variant (c.2184del; p.Thr729Leufs*88) in the oral-facial-digital syndrome type I (OFD1) gene. This is the first confirmed genetic diagnosis of mutations in the OFD1 gene in Korea. This investigation emphasizes the critical utility of panel sequencing of PKD in offering precise diagnosis and understanding the genetic profiles of PKD.
10.Anti-obesity effects of ethanol extract of green Citrus junos peel enriched in naringin and hesperidin in vitro andin vivo
Yu-Jin HEO ; Mi-Kyung LEE ; Ju-Hye IM ; Bo Seop KIM ; Hae-In LEE
Nutrition Research and Practice 2025;19(1):1-13
BACKGROUND/OBJECTIVES:
Green Citrus junos (yuja) peel extract has higher naringin and hesperidin contents and antioxidant activity than yellow yuja peel extract, but its anti-obesity effects are unclear. This study examined the anti-obesity properties of green yuja peel ethanol extract (GYE) in 3T3-L1 cells and high-fat diet (HFD)-induced obese mice.MATERIALS/METHODS: The effects of GYE on adipocyte differentiation were assessed by measuring Oil red O staining, mRNA and protein expression. The beneficial effects of GYE on HFD-induced obese mice were evaluated using the body weight, body composition, visceral fat size, and biochemical analysis.
RESULTS:
GYE inhibited adipocyte differentiation and lipid accumulation compared to the control cells, as evidenced by Oil red O staining and the triglyceride level, respectively.GYE down-regulated the adipogenic genes CCAAT/enhancer binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ), and lipogenic gene diacylglycerol O-acyltransferase 2 (DGAT2). GYE at 100 μg/mL downregulated the phosphorylation levels of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt), and their downstream targets PPARγ and sterol regulatory element-binding protein-1 (SREBP-1c) compared to the control group. In obese mice, GYE (100 mg/kg/day) reduced the body weight, body weight gain, and serum lipid level compared to the control group. Analysis using dual-energy X-ray absorptiometry showed that GYE decreased the fat percentage, fat in tissue, and abdominal circumference, while it increased the lean percentage compared to control group.Furthermore, GYE significantly reduced the visceral fat weight and size compared to the control group.
CONCLUSION
GYE suppressed adipocyte differentiation by inhibiting the PI3K-Akt pathway in vitro and reduced the body fat mass and visceral adiposity in HFD-induced obese mice.These findings suggest that GYE is a viable natural option for combating obesity.

Result Analysis
Print
Save
E-mail