1.Effect of summer short-term clinical practice teaching on empathy ability in rehabilitation therapy students
Chinese Journal of Rehabilitation Theory and Practice 2026;32(1):117-124
ObjectiveTo explore an centralized clinical practice teaching model delivered via a summer short-term semester, and to examine its effectiveness on empathy and communication efficacy among undergraduate students majoring in rehabilitation therapy through a mixed-methods design. MethodsFrom June to July, 2025, forty second-year rehabilitation therapy undergraduates from Nanchang Medical College participated in a one-week immersive clinical practice during the summer short-term semester. An action research framework integrating a one-group pre-post experimental design and qualitative research methods were adopted. Quantitative data were collected using the Chinese-Adapted Jefferson Scale of Empathy-Medical Student Version (JSE-HP) to assess changes in empathy. Qualitative data were obtained through semi-structured focus group interviews and structured reflective journals to investigate students' experiences and transformations in empathic cognition, emotional integration and professional identity. ResultsAfter the teaching intervention, students demonstrated significant improvements in the total score of JSE-HP and all subdimensions (perspective taking, compassionate care and standing in the patient's shoes) (t < -3.69, P < 0.01). Qualitative analysis yielded three core themes: reconstruction of clinical reasoning paradigms, emotional-cognitive integration and elevation of professional identity. ConclusionSummer short-term semester clinical practice model, structured around “clinical immersion, narrative reflection, interprofessional collaboration and formative assessment”, effectively facilitates embodied cultivation of empathy. This model not only bridges the gap between theory and clinical practice, but also serves as an educational catalyst for students' transformation from technical performers to humanistic caregivers. It aligns with the core concepts of the World Health Organization rehabilitation competency framework, offering a replicable and scalable approach to advancing systematic reform in medical humanities education.
2.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
3.Construction of A Nomogram Prognostic Model Based on Pretreatment Inflammatory Indicator for Esophageal Squamous Cell Carcinoma Patients Treated with Radical Radiotherapy
Shenbo FU ; Long JIN ; Jing LIANG ; Junjun GUO ; Yu CHE ; Chenyang LI ; Yong CHEN
Cancer Research on Prevention and Treatment 2025;52(2):142-150
Objective To describe the significance of the pretreatment inflammatory indicators in predicting the prognosis of patients with esophageal squamous cell carcinoma (ESCC) after undergoing radical radiotherapy. Methods The data of 246 ESCC patients who underwent radical radiotherapy were retrospectively collected. Receiver operating characteristic (ROC) curves were drawn to determine the optimal cutoff values for platelet-lymphocyte ratio (PLR), neutrophil-lymphocyte ratio (NLR), and systemic immune-inflammation index (SII). The Kaplan-Meier method was used for survival analysis. We conducted univariate and multivariate analyses by using the Cox proportional risk regression model. Software R (version 4.2.0) was used to create the nomogram of prognostic factors. Results The results of the ROC curve analysis showed that the optimal cutoff values of PLR, NLR, and SII were 146.06, 2.67, and 493.97, respectively. The overall response rates were 77.6% and 64.5% in the low and high NLR groups, respectively (P<0.05). The results of the Kaplan-Meier survival analysis revealed that the prognosis of patients in the low PLR, NLR, and SII group was better than that of patients in the high PLR, NLR, and SII group (all P<0.05). The results of the multivariate Cox regression analysis showed that gender, treatment modalities, T stage, and NLR were independent factors affecting the overall survival (OS). In addition, T stage and NLR were independent factors affecting the progression-free survival (PFS) (all P<0.05). The nomogram models of OS and PFS prediction were established based on multivariate analysis. The C-index values were 0.703 and 0.668. The calibration curves showed excellent consistency between the predicted and observed OS and PFS. Conclusion The pretreatment values of PLR, NLR, and SII are correlated with the prognosis of patients with ESCC who underwent radical radiotherapy. Moreover, NLR is an independent factor affecting the OS and PFS of ESCC patients. The NLR-based nomogram model has a good predictive ability.
4.Efficacy comparison of small-incision lenticule extraction and femtosecond assisted laser in situ keratomileusis in the treatment of myopia with astigmatism
Min ZHOU ; Suying YU ; Wanjiang DONG ; Long CHEN ; Miao HE
International Eye Science 2025;25(2):292-296
AIM: To compare the efficacy of small-incision lenticule extraction(SMILE)and femtosecond assisted laser in situ keratomileusis(FS-LASIK)in the treatment of patients with myopia and astigmatism.METHODS: Retrospective analysis. A total of 100 cases(200 eyes)of patients with myopia and astigmatism treated in our hospital from December 2021 to December 2022 were collected. Among them, 50 cases(100 eyes)were divided into SMILE group and 50 cases(100 eyes)were divided into FS-LASIK group according to the treatment plans. The visual acuity and astigmatism, corneal morphology parameters, subjective visual quality scores, ocular surface indicators, postoperative complications, and quality of life were compared between the two groups before and after surgery.RESULTS: There was no significant difference in uncorrected visual acuity(UCVA), best corrected visual acuity(BCVA), astigmatism, corneal asphericity Q value, corneal surface regularity index(SRI), corneal thickness, and corneal curvature between the two groups before surgery and at 1 d, 1, and 6 mo after surgery(all P>0.05). At 1 and 6 mo after surgery, the subjective visual quality score, the quality of life score, Schirmer I test(SⅠt)and tear film break-up time(BUT)in the SMILE group were better than that in the FS-LASIK group(all P<0.05). The incidence of complications in the SMILE group was lower than that in the FS-LASIK group at 6 mo after surgery(P=0.005).CONCLUSION: Both SMILE and FS-LASIK have good clinical effects in the treatment of myopia with astigmatism, but the SMILE could alleviate ocular surface injury, reduce the risk of complications and improve the quality of lifes for patients.
5.Mechanism of Gushining Granules in Attenuating Dexamethasone-induced Apoptosis of Bone Marrow Mesenchymal Stem Cells via Activating PI3K/Akt/Bad Signalling Pathway
Chengyu CHU ; Lei ZHU ; Long LIANG ; Feng WANG ; Xuejian YU ; Wenwu LIANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):115-122
ObjectiveTo establish steroid-induced osteonecrosis of the femoral head (SANFH) cell model by using dexamethasone (DEX)-induced bone marrow mesenchymal stem cells (BMSCs) and demonstrate that Gushing Granules (GSNs) exert an improving effect by activating the phosphatidylinositol-3-kinase/protein kinase B/B-lymphoma-2 gene related promoter (PI3K/Akt/Bad) signalling pathway. MethodsFirstly, SD rats were orally administered with drugs at a dose of 0.9 g·kg-1 to prepare GSN-containing serum, and CCK-8 screening was used to determine the optimal dosage and duration of action. Then, BMSCs were cultured and treated with 1×10-6 mol·L-1 DEX, 10% GSN-containing serum, and inhibitor LY294002 of PI3K/Akt signalling pathway for 24 hours to model and group SANFH cells. Cell viability and proliferation were detected by using CCK-8 assay kit and EdU staining kit. Flow cytometry was used to detect cell apoptosis. An alkaline phosphatase (ALP) assay kit was employed to detect ALP expression. In order to detect the PI3K/Akt/Bad signalling pathway and protein and mRNA expression of apoptosis-related proteins such as apoptosis regulatory factors B-cell lymphoma-2 gene (Bcl-2), and Bcl-2-associated X protein (Bax), osteocalcin (OCN), and Collagen Ⅰ, we used Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultsThe CCK-8 assay kit determined that the optimal dosage for GSN-containing serum is 10%, and the duration of action is 48 hours. After modelling and grouping the cells in each group, the detection results showed that the SANFH model group had significantly lower cell viability, cell proliferation, and ALP expression, as well as protein and mRNA expressions of PI3K, Akt, Bad, Bcl-2, OCN, and Collagen I compared to the blank group. The nucleic acid and protein levels of the Bax index and the cell apoptosis rate detected by flow cytometry significantly increased (P<0.05,P<0.01). After treatment with GSN-containing serum, cell viability, cell proliferation, and ALP expression, as well as expressions of PI3K, Akt, Bad, Bcl-2, OCN, and Collagen Ⅰ nucleic acids and proteins were significantly increased, while the nucleic acid and protein levels of the Bax index and the cell apoptosis rate detected by flow cytometry significantly decreased(P<0.05,P<0.01). Compared with the GSN drug-containing serum group, the simultaneous treatment with the inhibitor LY294002 and GSN drug-containing serum reversed the improvement effect of GSN. Specifically, the cell viability, cell proliferation, ALP expression, and the nucleic acid and protein levels of PI3K, Akt, Bad, Bcl-2, OCN, and Collagen Ⅰ were all significantly decreased, while the nucleic acid and protein levels of the Bax index and the cell apoptosis rate detected by flow cytometry were significantly increased (P<0.05, P<0.01). ConclusionGSNs antagonize DEX-induced apoptosis of BMSCs by activating the PI3K/Akt/Bad signalling pathway, providing a scientific theoretical basis for the clinical treatment of SANFH with GSNs.
6.Research progress of nano drug delivery system based on metal-polyphenol network for the diagnosis and treatment of inflammatory diseases
Meng-jie ZHAO ; Xia-li ZHU ; Yi-jing LI ; Zi-ang WANG ; Yun-long ZHAO ; Gao-jian WEI ; Yu CHEN ; Sheng-nan HUANG
Acta Pharmaceutica Sinica 2025;60(2):323-336
Inflammatory diseases (IDs) are a general term of diseases characterized by chronic inflammation as the primary pathogenetic mechanism, which seriously affect the quality of patient′s life and cause significant social and medical burden. Current drugs for IDs include nonsteroidal anti-inflammatory drugs, corticosteroids, immunomodulators, biologics, and antioxidants, but these drugs may cause gastrointestinal side effects, induce or worsen infections, and cause non-response or intolerance. Given the outstanding performance of metal polyphenol network (MPN) in the fields of drug delivery, biomedical imaging, and catalytic therapy, its application in the diagnosis and treatment of IDs has attracted much attention and significant progress has been made. In this paper, we first provide an overview of the types of IDs and their generating mechanisms, then sort out and summarize the different forms of MPN in recent years, and finally discuss in detail the characteristics of MPN and their latest research progress in the diagnosis and treatment of IDs. This research may provide useful references for scientific research and clinical practice in the related fields.
7.Effects of honey-processed Astragalus on energy metabolism and polarization of RAW264.7 cells
Hong-chang LI ; Ke PEI ; Wang-yang XIE ; Xiang-long MENG ; Zi-han YU ; Wen-ling LI ; Hao CAI
Acta Pharmaceutica Sinica 2025;60(2):459-470
In this study, RAW264.7 cells were employed to investigate the effects of honey-processed
8.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
9.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
10.Construction and empirical study of selection system for drug directory of county-level medical community based on multi-criteria decision analysis
Yinan GUO ; Xiuheng YU ; Yuqing XIE ; Shixin XIANG ; Huan LIN ; Youqi LONG ; Yu ZHAO
China Pharmacy 2025;36(8):914-919
OBJECTIVE To explore the construction of selection system for drug directory of the county-level medical community based on multi-criteria decision analysis, and provide decision-making basis for the selection of drug directory of medical community. METHODS Taking county-level medical community in Chongqing as an example,Delphi method and analytic hierarchy process were employed to construct the selection system for drug directory of the county-level medical community. Selected drugs were quantitatively scored based on the constructed index system, and the drug directory was selected according to the drug’s comprehensive score. The implementation effect of the directory was then evaluated through questionnaire surveys one year after the implementation of the directory. RESULTS The expert authority coefficients of the two rounds of consultation were> 0.8, with Kendall’s W values of 0.213 and 0.196, respectively (P<0.001). Finally, the selection system for drug directory of the medical community was determined to include five evaluation dimensions: safety, effectiveness, economy, accessibility, and innovation, along with eight evaluation indicators. In the drug directory selected according to the above method, the proportions of centrally procured drugs, medical insurance drugs, and essential drugs had all increased compared to before the selection; the comprehensive scores of chemical drugs ranged from 50.25 to 96.31 scores, and the proportion of drugs scoring between 70 and 100 scores had increased from 78.06% before selection to 85.82%. Among them, antiparasitic drugs had the highest comprehensive scores, while drugs for the digestive tract and metabolism were the most numerous. The evaluation scores of each indicator and the comprehensive scores of drugs in the drug directory after the selection process increased significantly than before selection (P< 0.05). CONCLUSIONS The selection system for drug directory of the county-level medical community constructed in this study is scientific, objective and operable. This process facilitates the promotion of standardized and unified management of drugs in the medical community.

Result Analysis
Print
Save
E-mail