1.Mechanism of Action of Kaixinsan in Ameliorating Alzheimer's Disease
Xiaoming HE ; Xiaotong WANG ; Dongyu MIN ; Xinxin WANG ; Meijia CHENG ; Yongming LIU ; Yetao JU ; Yali YANG ; Changbin YUAN ; Changyang YU ; Li ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):20-29
		                        		
		                        			
		                        			ObjectiveTo investigate the mechanism of action of Kaixinsan in the treatment of Alzheimer's disease (AD) based on network pharmacology, molecular docking, and animal experimental validation. MethodsThe Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and the Encyclopedia of Traditional Chinese Medicine(ETCM) databases were used to obtain the active ingredients and targets of Kaixinsan. GeneCards, Online Mendelian Inheritance in Man(OMIM), TTD, PharmGKB, and DrugBank databases were used to obtain the relevant targets of AD. The intersection (common targets) of the active ingredient targets of Kaixinsan and the relevant targets of AD was taken, and the network interaction analysis of the common targets was carried out in the STRING database to construct a protein-protein interaction(PPI) network. The CytoNCA plugin within Cytoscape was used to screen out the core targets, and the Metascape platform was used to perform gene ontology(GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis. The “drug-active ingredient-target” interaction network was constructed with the help of Cytoscape 3.8.2, and AutoDock Vina was used for molecular docking. Scopolamine (SCOP) was utilized for modeling and injected intraperitoneally once daily. Thirty-two male C57/BL6 mice were randomly divided into blank control (CON) group (0.9% NaCl, n=8), model (SCOP) group (3 mg·kg-1·d-1, n=8), positive control group (3 mg·kg-1·d-1 of SCOP+3 mg·kg-1·d-1 of Donepezil, n=8), and Kaixinsan group (3 mg·kg-1·d-1 of SCOP+6.5 g·kg-1·d-1 of  Kaixinsan, n=8). Mice in each group were administered with 0.9% NaCl, Kaixinsan, or Donepezil by gavage twice a day for 14 days. Morris water maze experiment was used to observe the learning memory ability of mice. Hematoxylin-eosin (HE) staining method was used to observe the pathological changes in the CA1 area of the mouse hippocampus. Enzyme linked immunosorbent assay(ELISA) was used to determine the serum acetylcholine (ACh) and acetylcholinesterase (AChE) contents of mice. Western blot method was used to detect the protein expression levels of signal transducer and activator of transcription 3(STAT3) and nuclear transcription factor(NF)-κB p65 in the hippocampus of mice. ResultsA total of 73 active ingredients of Kaixinsan were obtained, and 578 potential targets (common targets) of Kaixinsan for the treatment of AD were screened out. Key active ingredients included kaempferol, gijugliflozin, etc.. Potential core targets were STAT3, NF-κB p65, et al. GO functional enrichment analysis obtained 3 124 biological functions, 254 cellular building blocks, and 461 molecular functions. KEGG pathway enrichment obtained 248 pathways, mainly involving cancer-related pathways, TRP pathway, cyclic adenosine monophosphate(cAMP) pathway, and NF-κB pathway. Molecular docking showed that the binding of the key active ingredients to the target targets was more stable. Morris water maze experiment indicated that Kaixinsan could improve the learning memory ability of SCOP-induced mice. HE staining and ELISA results showed that Kaixinsan had an ameliorating effect on central nerve injury in mice. Western blot test indicated that Kaixinsan had a down-regulating effect on the levels of NF-κB p65 phosphorylation and STAT3 phosphorylation in the hippocampal tissue of mice in the SCOP model. ConclusionKaixinsan can improve the cognitive impairment function in SCOP model mice and may reduce hippocampal neuronal damage and thus play a therapeutic role in the treatment of AD by regulating NF-κB p65, STAT3, and other targets involved in the NF-κB signaling pathway. 
		                        		
		                        		
		                        		
		                        	
2.Mechanism of Paeoniae Radix Rubra and Aconiti Lateralis Radix Praeparata in Treatment of Acute-on-chronic Liver Failure Based on Bioinformation Analysis and Experimental Validation
Xiaoling TIAN ; Yu ZHANG ; Shan DU ; Mengsi WU ; Nianhua TAN ; Bin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):156-165
		                        		
		                        			
		                        			ObjectiveTo explore the mechanism of action of Paeoniae Radix Rubra and Aconiti Lateralis Radix Praeparata (CSFZ) in the treatment of acute-on-chronic liver failure (ACLF) through network pharmacology, molecular docking, and animal experiments. MethodsNetwork pharmacology was used to identify potential targets and related signaling pathways for the treatment of ACLF with CSFZ. Molecular docking was used to examine the binding activity of the core components with corresponding key targets. An ACLF rat model was established by subcutaneous and tail vein injections of bovine serum albumin combined with lipopolysaccharide (LPS) + D-galactosamine (D-GalN) intraperitoneal injection. A normal control group (NC), a model group, a CSFZ group (CSFZ, 5.85 g·kg-1), and a hepatocyte growth-promoting granule group (HGFG, 4.05 g·kg-1) were set up in this study. Pathological changes in rat liver tissue were observed using hematoxylin and eosin (HE) and Masson staining. Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression levels of interleukin-6 (IL-6), B-cell lymphoma-2 (Bcl-2), Caspase-3, and albumin (ALB). Real-time quantitative polymerase chain reaction (Real-time PCR) and Western blot were used to measure the mRNA and protein expression levels of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), phosphorylated PI3K (p-PI3K), and phosphorylated Akt (p-Akt). ResultsNetwork pharmacology screening identified 49 active ingredients of CSFZ, 103 action targets, and 3 317 targets related to ACLF. Among these, 74 targets overlapped with CSFZ drug targets. Key nodes in the protein-protein interaction (PPI) network included Akt1, tumor necrosis factor (TNF), IL-6, Bcl-2, and Caspase-3. Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified multiple signaling pathways, with the PI3K/Akt signaling pathway being the most frequent. Molecular docking showed that the core components of the drug exhibited good binding activity with the corresponding key targets. Animal experiments confirmed that CSFZ significantly improved liver tissue pathological damage in ACLF rats, reduced the release of inflammatory factors and liver cell apoptosis, and upregulated the expression levels of the PI3K/Akt signaling pathway. ConclusionThrough network pharmacology, molecular docking, and in vivo experiments, this study confirms the effect of CSFZ in reducing liver cell inflammatory damage and inhibiting liver cell apoptosis. The specific mechanism may be related to its involvement in regulating the PI3K/Akt signaling pathway. 
		                        		
		                        		
		                        		
		                        	
3.Molecular expression and pathological morphologic changes of extraocular muscle in concomitant exotropia
Xiaorui ZHOU ; Zhibin WANG ; Yu DI
International Eye Science 2025;25(1):55-58
		                        		
		                        			
		                        			 Strabismus, a common ocular condition, arises from an imbalance in the extraocular muscle force and deviation of the visual axis due to various factors. Concomitant strabismus is the predominant form of exotropia, with its pathogenesis believed to be associated with hereditary factors, abnormal eye accommodation function, and anomalies in binocular anatomy. Surgical intervention is often necessary for aligning the visual axes of both eyes and facilitating the recovery and establishment of stereoscopic vision. Despite this, the etiology of concomitant exotropia remains incompletely understood. This review consolidates recent research on aberrant molecular expression and pathological morphological changes within extraocular muscles affected by concomitant exotropia, offering insights into disease causation at molecular and pathological levels to underpin future preventive measures and clinical interventions. The discussion encompasses histological changes observed under electron microscopy as well as the impact of heavy chain protein, satellite cells, cadherin, growth factors on extraocular muscle protein expression. 
		                        		
		                        		
		                        		
		                        	
4.Relationship of family function with sleep quality and externalizing problem behaviors among preschool children
LU Yanping, GUO Shi, ZHOU Mingyue, ZHU Dongmei, YU Yizhen
Chinese Journal of School Health 2025;46(1):106-110
		                        		
		                        			Objective:
		                        			To explore the relationship of family function with sleep and externalizing problem behaviors of preschool children, so as to provide a guidance for externalizing problem prevention and intervention among preschool children.
		                        		
		                        			Methods:
		                        			From October 2023 to January 2024, a convenience sampling method was used to select 5 138 preschool children from kindergartens in 8 districts of Wuhan City, Hubei Province. Parents completed the survey for Family Adaptability and Cohesion Scale, children s sleep habits and Child Behavior Checklist (CBCL). Spearman correlation analysis was used to examine the correlation  of family function with scores of sleep quality and externalizing problem behaviors among preschool children. A mediation model analysis and bootstrap test were conducted to further investigate the mediating role of sleep quality between family function and externalizing problem behaviors. Mplus 8.7 software was used for latent profile analysis of family function.
		                        		
		                        			Results:
		                        			The reported rates of poor sleep quality and externalizing problem behaviors among preschool children were 11.8% ( n =607), 20.0% ( n =1 026). The relevant analysis results showed that family function was negatively correlated with sleep quality and externalizing problem behaviors ( r = -0.20, -0.23), and sleep quality was positively correlated with externalizing problem behaviors ( r =0.27) ( P <0.01). The mediation effect test showed that family function negatively predicted externalizing problem behaviors ( β =-0.079) and sleep quality ( β = -0.075), while sleep quality positively predicted externalizing problem behaviors ( β =0.215) ( P <0.01). The latent profile analysis results showed that family function could be classified into 4 categories: high family function group (23.01%), upper middle family function group (44.65%), moderate family function group (26.24%) and low family function group (6.11%). Compared to high family function, the other three categories significantly positively predicted externalizing problem behaviors, and the mediating effects of sleep quality on different categories of family function were statistically significant [upper middle family function: mediation effect value was 0.022 (95% CI =0.004-0.041) and direct effect value was 0.329 (95% CI =0.263-0.396); middle family function: mediation effect value was 0.087 (95% CI =0.063-0.115) and direct effect value was 0.491 (95% CI =0.416-0.565); low family function: mediation effect value was 0.144 (95% CI =0.107-0.185) and direct effect 0.621 (95% CI =0.503-0.740)] ( P < 0.05 ).
		                        		
		                        			Conclusion
		                        			Family function negatively predicts the externalizing problem behaviors of preschool children, and sleep quality plays a partial mediating role.
		                        		
		                        		
		                        		
		                        	
5.Relationship of physical activity and screen time with overweight and obesity among children and adolescents with special needs in Tianjin
HAN Yu, LI Zhi, LI Penghong, CUI Tingkai, XIONG Wenjuan, QU Zhiyi, XI Wei, ZHANG Xin
Chinese Journal of School Health 2025;46(2):162-166
		                        		
		                        			Objective:
		                        			To investigate the association of physical activity and screen time with overweight and obesity among children and adolescents with special needs in Tianjin, so as to provide scientific evidence for childhood obesity prevention and intervention measures in the population.
		                        		
		                        			Methods:
		                        			From January 2022 to June 2024, 296 children and adolescents with intellectual disabilities and autism spectrum disorders aged 2-18 years were recruited from special education schools and institutions in Tianjin. Height and weight were measured, and a standardized questionnaire was used to assess physical activity and screen time. Binary Logistic regression analysis was carried out to investigate the association of physical activity and screen time with overweight and obesity.
		                        		
		                        			Results:
		                        			The prevalence of overweight and obesity among children and adolescents with special needs in Tianjin were 17.2% and 21.6%, respectively, and the combined prevalence of overweight and obesity was 38.9%. The median of moderatetovigorous physical activity (MVPA) time was 0.20 h/d, and physical activity sufficiency rate was 7.8%. The median of screen time was 1.79 h/d, and the screen time compliance rate was 68.2%. The binary Logistic regression results showed that lower levels of MVPA time and increased screen time were associated with a higher risk of overweight and obesity among children and adolescents with special needs [OR(95%CI)=1.80(1.06-3.07), 2.40(1.42-4.07),P<0.05].
		                        		
		                        			Conclusions
		                        			Insufficient physical activity and excessive screen time are associated with an increased risk of overweight and obesity among children and adolescents with special needs. Therefore, comprehensive intervention measures should be implemented as early as possible to prevent and reduce the incidence of overweight and obesity in this population.
		                        		
		                        		
		                        		
		                        	
6.Study on the synergistic antifungal effects of caspofungin acetate loaded glyceryl monostearate nanoparticle on Candida albicans
Lingyi GUO ; Yanchao LIU ; Lu GAO ; Ruiyao LIU ; Quanzhen LYU ; Yuan YU
Journal of Pharmaceutical Practice and Service 2025;43(3):136-142
		                        		
		                        			
		                        			Objective To prepare and characterize caspofungin acetate-loaded solid lipid nanoparticles using glycerol monostearate (CAS-SLNs), and investigate the antifungal effect of potentiation on Candida albicans in vitro and in vivo. Methods A high performance liquid chromatography method was established for the determination of caspofungin acetate (CAS). CAS-SLNs were prepared by the melt-emulsification method and characterized. The minimum inhibitory concentration (MIC) and the inhibitory effect on Candida albicans biofilm were determined. A systemic infection model of Candida albicans was established in mice, and the growth curve models for body weight and fungal load of kidneys of the animals were investigated after intravenous infection. Results The retention time of CAS was 6.8 min. The calibration curve showed good linearity, and the precision and stability met the requirements of the assay. Transmission electron microscopy revealed that CAS-SLNs were spherical, with a particle size of (135.97±1.73) nm. The Zeta potential was (19.33±0.37) mV, drug loading was (7.55±0.68)%, and encapsulation efficiency was (67.71±1.74)%. CAS-SLNs showed significant in vitro antifungal inhibition with a MIC of 9.78×10−4 g/ml, which was significantly better than CAS group and the physical mixture group of CAS and GMS, as well as the same biofilm inhibition was observed (P<0.001). Pharmacodynamic studies demonstrated that CAS-SLNs maintained stable body weight gain compared to the control (P<0.01) and CAS groups in Candida albicans invasive infection model, and that CAS-SLNs significantly reduced renal fungal burden load relative to the CAS group (P<0.05). In vivo study revealed that a stable body weight was maintained in CAS-SLNs group compared to the control group (P<0.01) in Candida albicans invasive infection model. CAS-SLNs also significantly reduced renal fungal load compared to the CAS group (P<0.05). Conclusion CAS-SLNs significantly enhanced the antifungal effects of CAS in vitro and in vivo, which provided a valuable insight for the research of new formulation of CAS.
		                        		
		                        		
		                        		
		                        	
7.Exploring the influence of olfactory receptors in metabolic diseases and cancers: beyond sensory functions
In-sun YU ; Jeong Sook YE ; Jaewon SHIM
Kosin Medical Journal 2025;40(1):15-20
		                        		
		                        			
		                        			 Olfactory receptors (ORs), which are primarily responsible for olfactory sensation in the nasal epithelium, constitute the largest family of genes in the human genome. The majority of ORs are orphan receptors with unknown ligands; however, recent studies have revealed their expression in non-olfactory tissues, implying that ORs may be involved in various physiological processes beyond olfaction. This review highlights recent findings on the roles of ORs in cancers, including prostate, breast, and lung cancer, as well as their involvement in other diseases, such as atherosclerosis, Alzheimer's disease, and viral infections. Additionally, we explore emerging knowledge about the role of ORs in metabolic regulation, focusing on their effect on triglyceride metabolism, glucagon-like peptide-1 secretion, and lipid accumulation. Advancements in technology, such as structural analysis, have accelerated research on OR ligands and their functions, potentially positioning ORs as novel therapeutic targets for various diseases. This review highlights the need for further research into the non-olfactory roles of ORs and their potential as targets for future therapeutic interventions. 
		                        		
		                        		
		                        		
		                        	
8.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
		                        		
		                        			 Background:
		                        			Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency. 
		                        		
		                        			Results:
		                        			In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7. 
		                        		
		                        			Conclusions
		                        			This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS. 
		                        		
		                        		
		                        		
		                        	
9.Sex-Specific Reference Intervals and AgeRelated Variations in Hematologic Parameters in Korean Adults Measured Using the Beckman Coulter DxH 900 Analyzer
Shinae YU ; Eunkyoung YOU ; Sae Am SONG ; Jeong Nyeo LEE ; Kyung Ran JUN ; Ja Young LEE
Journal of Laboratory Medicine and Quality Assurance 2025;47(1):6-13
		                        		
		                        			 Background:
		                        			This study established sex-specific reference intervals (RIs) for hematological parameters, including the monocyte distribution width (MDW), in Korean adults and assessed the need for separate RIs according to sex in older adults. 
		                        		
		                        			Methods:
		                        			Hematological parameters were measured using a DxH 900 hematology analyzer (Beckman Coulter, USA) on 328 peripheral blood samples from 124 men and 204 women aged 19–93 years. 
		                        		
		                        			Results:
		                        			The RIs for white blood cells, red blood cells (RBCs), Hb, Hct, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, monocyte percentage, and neutrophil, eosinophil, lymphocyte, and monocyte counts differed significantly by sex (P<0.05). Mean corpuscular volume was significantly positively associated with age, whereas RBC and platelet counts were significantly negatively correlated with age in both men and women. Age-based analysis revealed significant shifts in the RBC parameters beginning at 60 years of age in men and 70 years of age in women. The MDW did not show significant differences according to sex or age. 
		                        		
		                        			Conclusions
		                        			This study supports the use of sex-specific RIs and highlights the importance of considering age when interpreting results regarding hematological parameters in clinical practice. 
		                        		
		                        		
		                        		
		                        	
10.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
		                        		
		                        			 Objective:
		                        			This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD). 
		                        		
		                        			Methods:
		                        			Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured. 
		                        		
		                        			Results:
		                        			The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females. 
		                        		
		                        			Conclusion
		                        			A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach. 
		                        		
		                        		
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail