1.Shenqi Dihuang Decoction Improves Renal Function in Mouse Model of Diabetic Kidney Disease by Inhibiting Arachidonic Acid-related Ferroptosis Via ACSL4/LPCAT3/ALOX15 Axis
Yuantao WU ; Zhibin WANG ; Xinying FU ; Xiaoling ZOU ; Wenxiao HU ; Yixian ZOU ; Jun FENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):140-149
ObjectiveTo investigate the therapeutic effects and mechanism of Shenqi Dihuang decoction (SQDHD) on diabetic kidney disease (DKD), with a focus on its impact on arachidonic acid-related ferroptosis. MethodsSixty C57BL/6 mice were allocated into a normal group (n=10) and a modeling group (n=50), with 43 mice successfully modeled. The successfully modeled mice were further allocated into model, low-, medium-, and high-dose (4.68, 9.36, and 18.72 g·kg-1, respectively) SQDHD, and dapagliflozin (0.13 mg·kg-1) groups. The drug treatment groups were administrated with corresponding agents by gavage, and the normal and model groups were administrated with equal volumes of normal saline by gavage. An electronic balance and a glucometer were used to monitor the body weight and fasting blood glucose level from the tail tip, respectively. Serum creatinine (Scr) and blood urea nitrogen (BUN) levels were measured by enzyme-linked immunosorbent assay (ELISA). Histopathological changes in the renal tissue were assessed by hematoxylin-eosin staining, Masson staining, and periodic acid-Schiff (PAS) staining. The fluorescence intensity of reactive oxygen species (ROS) in frozen sections was observed by an inverted fluorescence microscope to evaluate the levels of ferrous ions (Fe2+) and lipid peroxidation in the renal tissue. Immunofluorescence staining of glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase long-chain family member 4 (ACSL4) in the renal tissue was performed to detect their localization and expression. Western blot was employed to assess the expression levels of key ferroptosis proteins such as GPX4 and cystine/glutamate antiporter (xCT), as well as the arachidonic acid metabolic pathway-related proteins, including ACSL4, lysophosphatidylcholine acyltransferase 3 (LPCAT3), and arachidonate 15-lipoxygenase (ALOX15). Real-time PCR was employed to measure the mRNA levels of key ferroptosis proteins, including solute carrier family 7 member 11 (SLC7A11) and GPX4, as well as arachidonic acid metabolism-related factors (ACSL4, LPCAT3, and ALOX15) in the renal tissue. ResultsCompared with the normal group, DKD model mice exhibited a decrease in body weight (P<0.01), increases in levels of blood glucose (P<0.01), 24-hour urinary protein, Scr, and BUN (P<0.01), along with severe pathological changes, such as mesangial cell proliferation, basement membrane thickening, tubular atrophy, and interstitial inflammatory cell infiltration. In addition, the modeling elevated the levels of Fe2+, MDA, LPO, and ROS (P<0.01), lowered the GPX4 and xCT levels (P<0.01), raised the ACSL4, LPCAT3, and ALOX15 levels (P<0.01), down-regulated the mRNA levels of GPX4 and SLC7A11 (P<0.01), and up-regulated the mRNA levels of ACSL4, LPCAT3, and ALOX15 (P<0.01) in the renal tissue. Compared with the model group, low-, medium-, and high-dose SQDHD groups and the dapagliflozin group showed an increase in body weight (P<0.01), decreases in levels of blood glucose (P<0.01), 24-hour urinary protein, and Scr (P<0.01), alleviated pathological changes in glomeruli and tubules, and reduced degree of glomerular and tubular fibrosis. The high-dose SQDHD group and the dapagliflozin group showed reductions in Fe2+, MDA, LPO, and ROS levels (P<0.01). The medium- and high-dose SQDHD groups and the dapagliflozin group exhibited increased levels of GPX4 and xCT (P<0.01), decreased levels of ACSL4, LPCAT3, and ALOX15 (P<0.05, P<0.01), and down-regulated mRNA levels of ACSL4, LPCAT3, and ALOX15 (P<0.01). ConclusionSQDHD ameliorates DKD by inhibiting ferroptosis potentially by reducing iron ion levels, inhibiting lipid peroxidation, up-regulating GPX4 expression, and down-regulating ACSL4 expression. This study provides new insights and a theoretical basis for the treatment of DKD with traditional Chinese medicine and identifies potential targets for developing novel therapeutics for DKD.
2.Shenqi Dihuang Decoction Improves Renal Function in Mouse Model of Diabetic Kidney Disease by Inhibiting Arachidonic Acid-related Ferroptosis Via ACSL4/LPCAT3/ALOX15 Axis
Yuantao WU ; Zhibin WANG ; Xinying FU ; Xiaoling ZOU ; Wenxiao HU ; Yixian ZOU ; Jun FENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):140-149
ObjectiveTo investigate the therapeutic effects and mechanism of Shenqi Dihuang decoction (SQDHD) on diabetic kidney disease (DKD), with a focus on its impact on arachidonic acid-related ferroptosis. MethodsSixty C57BL/6 mice were allocated into a normal group (n=10) and a modeling group (n=50), with 43 mice successfully modeled. The successfully modeled mice were further allocated into model, low-, medium-, and high-dose (4.68, 9.36, and 18.72 g·kg-1, respectively) SQDHD, and dapagliflozin (0.13 mg·kg-1) groups. The drug treatment groups were administrated with corresponding agents by gavage, and the normal and model groups were administrated with equal volumes of normal saline by gavage. An electronic balance and a glucometer were used to monitor the body weight and fasting blood glucose level from the tail tip, respectively. Serum creatinine (Scr) and blood urea nitrogen (BUN) levels were measured by enzyme-linked immunosorbent assay (ELISA). Histopathological changes in the renal tissue were assessed by hematoxylin-eosin staining, Masson staining, and periodic acid-Schiff (PAS) staining. The fluorescence intensity of reactive oxygen species (ROS) in frozen sections was observed by an inverted fluorescence microscope to evaluate the levels of ferrous ions (Fe2+) and lipid peroxidation in the renal tissue. Immunofluorescence staining of glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase long-chain family member 4 (ACSL4) in the renal tissue was performed to detect their localization and expression. Western blot was employed to assess the expression levels of key ferroptosis proteins such as GPX4 and cystine/glutamate antiporter (xCT), as well as the arachidonic acid metabolic pathway-related proteins, including ACSL4, lysophosphatidylcholine acyltransferase 3 (LPCAT3), and arachidonate 15-lipoxygenase (ALOX15). Real-time PCR was employed to measure the mRNA levels of key ferroptosis proteins, including solute carrier family 7 member 11 (SLC7A11) and GPX4, as well as arachidonic acid metabolism-related factors (ACSL4, LPCAT3, and ALOX15) in the renal tissue. ResultsCompared with the normal group, DKD model mice exhibited a decrease in body weight (P<0.01), increases in levels of blood glucose (P<0.01), 24-hour urinary protein, Scr, and BUN (P<0.01), along with severe pathological changes, such as mesangial cell proliferation, basement membrane thickening, tubular atrophy, and interstitial inflammatory cell infiltration. In addition, the modeling elevated the levels of Fe2+, MDA, LPO, and ROS (P<0.01), lowered the GPX4 and xCT levels (P<0.01), raised the ACSL4, LPCAT3, and ALOX15 levels (P<0.01), down-regulated the mRNA levels of GPX4 and SLC7A11 (P<0.01), and up-regulated the mRNA levels of ACSL4, LPCAT3, and ALOX15 (P<0.01) in the renal tissue. Compared with the model group, low-, medium-, and high-dose SQDHD groups and the dapagliflozin group showed an increase in body weight (P<0.01), decreases in levels of blood glucose (P<0.01), 24-hour urinary protein, and Scr (P<0.01), alleviated pathological changes in glomeruli and tubules, and reduced degree of glomerular and tubular fibrosis. The high-dose SQDHD group and the dapagliflozin group showed reductions in Fe2+, MDA, LPO, and ROS levels (P<0.01). The medium- and high-dose SQDHD groups and the dapagliflozin group exhibited increased levels of GPX4 and xCT (P<0.01), decreased levels of ACSL4, LPCAT3, and ALOX15 (P<0.05, P<0.01), and down-regulated mRNA levels of ACSL4, LPCAT3, and ALOX15 (P<0.01). ConclusionSQDHD ameliorates DKD by inhibiting ferroptosis potentially by reducing iron ion levels, inhibiting lipid peroxidation, up-regulating GPX4 expression, and down-regulating ACSL4 expression. This study provides new insights and a theoretical basis for the treatment of DKD with traditional Chinese medicine and identifies potential targets for developing novel therapeutics for DKD.
3.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
4.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
5.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
6.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
7.Airborne PM2.5 and Parkinson's disease: An updated meta-analysis
Yixian WANG ; Jianjun WU ; Rui HU ; Jingjuan JU
Journal of Environmental and Occupational Medicine 2024;41(2):168-174
Background An association between atmospheric fine particulate matter (PM2.5) exposure and Parkinson's disease (PD) has been suggested by previous studies, but the results of current epidemiological studies are still inconclusive. Objective To systematically evaluate the relationship between exposure to ambient PM2.5 and the risk of PD, as well as to explore potential influencing factors, aiming to provide scientific evidence for formulating early prevention strategies for PD. Methods Cochrane Library, PubMed, Web of Science, Medline, Embase, China National Know-ledge Infrastructure (CNKI), Wanfang Database, and VIP Chinese Science and Technology Journal Database were queried. The search terms included Parkinson's disease, particulate matter 2.5, and PM2.5 in both Chinese and English. Cohort studies examining the association between atmospheric PM2.5 exposure and the risk of PD were collected and searched from the inception of each database to June 26, 2023. The identified literature was screened, and the basic information of the included studies and their research subjects, outcome indicators, quantitative results of each study, as well as the information required by bias risk assessment were extracted. The Newcastle-Ottawa Scale was employed to assess the risk of literature bias. Meta-analysis, subgroup analysis, sensitivity analysis, and publication bias analysis were conducted in Stata 15.0 software. Results Twelve cohort studies were identified. A total of 17443136 participants with follow-up periods ranging from 3.5 to 22 years were included in the analysis. The meta-analysis, utilizing a random-effects model, revealed that PD risk was elevated by 6% after exposure to PM2.5 [HR=1.06 (95%CI: 1.02, 1.11), P=0.006]. The subgroup analysis demonstrated that exposure to PM2.5 increased PD risk by 6% in North America [HR=1.06 (95%CI: 1.00, 1.12), P=0.033] and by 17% in East Asia [HR=1.17 (95%CI: 1.02, 1.33), P=0.020]. However, the effect was not statistically significant in Europe. PD risk exhibited a 7% rise [HR=1.07 (95%CI: 1.02, 1.14), P=0.011] in individuals aged 60 years and older, which was different from that in individuals younger than 60 years. Exposure to various concentrations of PM2.5 was observed to associate with an elevated risk of PD. The inclusion of adjustments for PD-related comorbidities did not alter the conclusion that ambient PM2.5 exposure might elevate the risk of PD. The studies with a follow-up duration exceeding 5 years and reporting more than 1000 PD cases suggested a significant increase in the risk of PD due to ambient PM2.5 exposure [HR=1.06 (95%CI: 1.01, 1.12), P=0.012; HR=1.06 (95%CI: 1.01, 1.11), P=0.027, respectively]. Conversely, no significant association was identified between ambient PM2.5 exposure and the risk of PD within the cohorts with a follow-up duration of less than 5 years and reporting fewer than 1000 PD cases [HR=1.09 (95%CI: 0.95, 1.26), P=0.214; HR=1.12 (95%CI: 0.98, 1.02), P=0.092, respectively]. The sensitivity analysis showed that the results were stable. The publication bias analysis and the combined trim-and-fill method showed that the results were robust. Conclusion The risk of PD could be increased by ambient PM2.5 exposure and influenced by age and area. The research results might be affected by the duration of follow-up and the quantity of PD cases reported.
8.Research progress on cognitive dysfunction induced by occupational noise and combined exposure to heavy metals
Caixia LI ; Kangyong WU ; Yixian REN ; Bin LIN ; Jinwei ZHANG ; Zhi WANG ; Jiabin LIANG
China Occupational Medicine 2024;51(2):172-176
Exposure to occupational noise and heavy metals are common occupational hazards in workplaces. Occupational noise exposure not only leads to noise-induced hearing loss but also cognitive dysfunction. Exposure to common heavy metals such as lead, manganese, and cadmium during work is closely related to cognitive dysfunction in workers. Combined exposure to noise and heavy metals is common in workplaces. However, current research on the combined effects of exposure to occupational noise with lead or manganese on workers' cognitive function is not comprehensive or systematic. The method for cognitive dysfunction identification varies, leading to a lack of comparability. And the causality between occupational exposure and cognitive dysfunction in workers has not been clarified. Therefore, studying the cognitive dysfunction due to combined exposure to noise and common heavy metals is of great significance for workers' occupational health. In the future, it is necessary to unify the method for cognitive dysfunction identification and conduct systematic and comprehensive research on the effects, mechanisms, and combined effects of exposure to occupational noise with lead, manganese, cadmium, and other heavy metals on workers' cognitive dysfunction, to ensure the occupational health rights and interests of workers.
9.The effect of the AIM2 inflammasome in noise-induced cognitive dysfunction in rats
Kangyong WU ; Yixian REN ; Yanmei RUAN ; Jialuo MA ; Caixia LI ; Zhi WANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2024;42(5):332-339
Objective:To explore the effect of the absent in melanoma 2 (AIM2) -mediated neuroinflammation in noise-induced cognitive dysfunction in rats.Methods:In April 2023, sixteen male Wistar rats were randomly divided into control group and noise group, with 8 rats in each group. The rats in the noise group were placed in 50 cm×50 cm×40 cm transparent boxes and exposed to 100 dB (A) white noise with a sound pressure level of 100 dB (A) (4 h/d for 30 d) . At the same time, rats in the control group were kept in similar boxes with environmental noise less than 60 dB (A) . After 30 days of noise exposure, the Morris water maze experiment was applied to test the learning and memory abilities of the rats; the pathological morphology of hippocampal tissues was observed by Hematoxylin-Eosin (HE) staining. Western blot was used to detect the protein expression levels of AIM2, cysteinyl aspartate specific proteinase-1 (caspase-1) , apoptosis-associated speck-like protein (ASC) , interleukin-1β (IL-1β) , IL-18, ionic calcium-binding articulation molecule-1 (Iba-1) , and glial fibrillary acidic protein (GFAP) . The expression of both Iba-1 and GFAP in hippocampal tissue was assessed by immunohistochemical staining. The co-localization of AIM2 with Iba-1 or GFAP was determined by immunofluorescence double staining.Results:Compared with the control group, the escape latency of rats in the noise group was increased by 16.29 s, 17.71 s, and 20.26 s on days 3, 4, and 5, respectively. On day 6, the noise-exposed rats spent shorter time in the target quadrant and had fewer times in crossing the platform[ (7.25±2.27) s and (1.13±0.64) times] than the control group[ (15.64±3.99) s and (4.25±2.12) times] ( P<0.05) . After noise exposure, hippocampal neurons of rats displayed marked nuclear hyperchromatic and pyknosis phenomenon. The noise-exposed rats had higher numbers of both microglia and astrocytes (27.00±2.65 and 43.33±5.51) in the DG area of the hippocampus relative to the control group (14.67±3.06 and 20.00±4.58) ( P<0.05) . Moreover, the glial cells in the noise group had larger cell cytosol with more and thicker branches. The protein expression levels of inflammatory cytokines Cleaved-IL-1β and Cleaved-IL-18 in the hippocampus of rats in the noise group (1.55±0.19 and 1.74±0.12) were significantly higher than the control group (1.00±0.11 and 1.00±0.13) ( P<0.05) . After noise exposure, the protein expression levels of AIM2, Cleaved-Caspase-1 and ASC (1.19±0.09, 1.34±0.07 and 1.14±0.01) were higher than the control group (1.00±0.07, 1.00±0.14 and 1.00±0.06) and differences between the two groups were statistically significant ( P<0.05) . A significant increase in the number of cells co-localizing AIM2 with Iba-1 or GFAP in the noise group (28.67±4.04 and 40.67±5.13) compared with the control group (15.67±4.04 and 17.67±3.79) , and statistically significant differences were observed between the two groups ( P<0.05) . Conclusion:Noise exposure may activate the AIM2 inflammasome in hippocampal glial cells of rats, releasing excessive inflammatory cytokines and causing neuroinflammation that damages neurons.
10.The 5-year relative survival rate among cancer patients in Henan province of China, 2015-2019
Qiong CHEN ; Mingxia ZHANG ; Lanwei GUO ; Liyang ZHENG ; Chunya LIU ; Yixian WANG ; Yin LIU ; Hong WANG ; Huifang XU ; Ruihua KANG ; Xiaoyang WANG ; Shuzheng LIU ; Shaokai ZHANG
Chinese Journal of Oncology 2024;46(10):954-960
Objective:To analyze the 5-year relative survival rate of cancer in Henan province based on cancer registration data.Methods:Cancer survival data were extracted from the cancer registration database of Henan province with the diagnosis date between January 1, 2010 and December 31, 2019 were included. The closing date of follow-up was set as December 31, 2019. The 5-year relative survival rate of cancer was calculated using the period survival analysis method and the Ederer II method in the R package "periodR", and the interest period was between 2015 and 2019.Results:During the period of 2015-2019, the overall 5-year relative survival rate of cancer patients in Henan province was 43.6%, and after age-standardization, it was 40.2%. The overall 5-year relative survival rate showed the characteristics of higher survival rate in females than males (45.9% vs 34.7%, Z=39.60, P<0.001) and higher survival rate in urban areas than rural areas (44.9% vs 39.1%, Z=12.97, P<0.001). The 5-year relative survival rate for cancer patients among children aged 0-14 was 60.2%, and for adults aged 15 and above, it was 43.5%, which was standardized to 40.2% after age adjustment. There are two types of cancers with a standardized 5-year relative survival rate exceeding 70% (thyroid cancer at 82.2% and breast cancer at 71.6%), and four cancers with a rate below 30% (pancreatic cancer at 18.2%, liver cancer at 19.6%, lung cancer at 24.0%, and gallbladder cancer at 26.6%). Conclusion:The cancer 5-year survival rate in Henan Province is lower than that of the national average, indicating the need for continued enhancement of cancer prevention and control measures.

Result Analysis
Print
Save
E-mail