1.Monotropein resists atherosclerosis by reducing inflammation, oxidative stress, and abnormal proliferation and migration of vascular smooth muscle cells
Hongliang LI ; Bingqian YE ; Jiping TIAN ; Bofan WANG ; Yiwen ZHA ; Shuying ZHENG ; Tan MA ; Wenwen ZHUANG ; Won Sun PARK ; Jingyan LIANG
The Korean Journal of Physiology and Pharmacology 2025;29(2):245-255
Monotropein is a compound classified into iridoid which is found in herbaceous plants Morindae officinalis. It possesses anti-inflammatory, antioxidant, and anti-osteoarthritic activities. Previous study indicates that monotropein may have the potential to combat cardiovascular disease, although the related mechanism remains unclear. In this study, we constructed the model of atherosclerosis by oxidized low density lipoprotein-induced vascular smooth muscle cells and LDLR –/–mice given high-fat diet to investigate the effects of monotropein on atherosclerosis.Our results showed that monotropein treatment significantly reduced the area of atherosclerotic plaques and necrotic cores in mice, inhibited the proliferation and migration of vascular smooth muscle cells, and reduced inflammatory responses and oxidative stress, which in turn alleviated atherosclerosis. In addition, we found that monotropein reduced the expression levels of P-NF-κB and P-AP-1. In conclusion, our data suggest that monotropein inhibited the proliferation and migration of vascular smooth muscle cells by mediating the activity of NF-κB, AP-1, reducing the level of inflammation and oxidative stress, and thus resisting the development of atherosclerosis. These findings demonstrate the efficacious therapeutic impact of monotropein on atherosclerosis and elucidate its specific target.
2.Monotropein resists atherosclerosis by reducing inflammation, oxidative stress, and abnormal proliferation and migration of vascular smooth muscle cells
Hongliang LI ; Bingqian YE ; Jiping TIAN ; Bofan WANG ; Yiwen ZHA ; Shuying ZHENG ; Tan MA ; Wenwen ZHUANG ; Won Sun PARK ; Jingyan LIANG
The Korean Journal of Physiology and Pharmacology 2025;29(2):245-255
Monotropein is a compound classified into iridoid which is found in herbaceous plants Morindae officinalis. It possesses anti-inflammatory, antioxidant, and anti-osteoarthritic activities. Previous study indicates that monotropein may have the potential to combat cardiovascular disease, although the related mechanism remains unclear. In this study, we constructed the model of atherosclerosis by oxidized low density lipoprotein-induced vascular smooth muscle cells and LDLR –/–mice given high-fat diet to investigate the effects of monotropein on atherosclerosis.Our results showed that monotropein treatment significantly reduced the area of atherosclerotic plaques and necrotic cores in mice, inhibited the proliferation and migration of vascular smooth muscle cells, and reduced inflammatory responses and oxidative stress, which in turn alleviated atherosclerosis. In addition, we found that monotropein reduced the expression levels of P-NF-κB and P-AP-1. In conclusion, our data suggest that monotropein inhibited the proliferation and migration of vascular smooth muscle cells by mediating the activity of NF-κB, AP-1, reducing the level of inflammation and oxidative stress, and thus resisting the development of atherosclerosis. These findings demonstrate the efficacious therapeutic impact of monotropein on atherosclerosis and elucidate its specific target.
3.Monotropein resists atherosclerosis by reducing inflammation, oxidative stress, and abnormal proliferation and migration of vascular smooth muscle cells
Hongliang LI ; Bingqian YE ; Jiping TIAN ; Bofan WANG ; Yiwen ZHA ; Shuying ZHENG ; Tan MA ; Wenwen ZHUANG ; Won Sun PARK ; Jingyan LIANG
The Korean Journal of Physiology and Pharmacology 2025;29(2):245-255
Monotropein is a compound classified into iridoid which is found in herbaceous plants Morindae officinalis. It possesses anti-inflammatory, antioxidant, and anti-osteoarthritic activities. Previous study indicates that monotropein may have the potential to combat cardiovascular disease, although the related mechanism remains unclear. In this study, we constructed the model of atherosclerosis by oxidized low density lipoprotein-induced vascular smooth muscle cells and LDLR –/–mice given high-fat diet to investigate the effects of monotropein on atherosclerosis.Our results showed that monotropein treatment significantly reduced the area of atherosclerotic plaques and necrotic cores in mice, inhibited the proliferation and migration of vascular smooth muscle cells, and reduced inflammatory responses and oxidative stress, which in turn alleviated atherosclerosis. In addition, we found that monotropein reduced the expression levels of P-NF-κB and P-AP-1. In conclusion, our data suggest that monotropein inhibited the proliferation and migration of vascular smooth muscle cells by mediating the activity of NF-κB, AP-1, reducing the level of inflammation and oxidative stress, and thus resisting the development of atherosclerosis. These findings demonstrate the efficacious therapeutic impact of monotropein on atherosclerosis and elucidate its specific target.
4.Monotropein resists atherosclerosis by reducing inflammation, oxidative stress, and abnormal proliferation and migration of vascular smooth muscle cells
Hongliang LI ; Bingqian YE ; Jiping TIAN ; Bofan WANG ; Yiwen ZHA ; Shuying ZHENG ; Tan MA ; Wenwen ZHUANG ; Won Sun PARK ; Jingyan LIANG
The Korean Journal of Physiology and Pharmacology 2025;29(2):245-255
Monotropein is a compound classified into iridoid which is found in herbaceous plants Morindae officinalis. It possesses anti-inflammatory, antioxidant, and anti-osteoarthritic activities. Previous study indicates that monotropein may have the potential to combat cardiovascular disease, although the related mechanism remains unclear. In this study, we constructed the model of atherosclerosis by oxidized low density lipoprotein-induced vascular smooth muscle cells and LDLR –/–mice given high-fat diet to investigate the effects of monotropein on atherosclerosis.Our results showed that monotropein treatment significantly reduced the area of atherosclerotic plaques and necrotic cores in mice, inhibited the proliferation and migration of vascular smooth muscle cells, and reduced inflammatory responses and oxidative stress, which in turn alleviated atherosclerosis. In addition, we found that monotropein reduced the expression levels of P-NF-κB and P-AP-1. In conclusion, our data suggest that monotropein inhibited the proliferation and migration of vascular smooth muscle cells by mediating the activity of NF-κB, AP-1, reducing the level of inflammation and oxidative stress, and thus resisting the development of atherosclerosis. These findings demonstrate the efficacious therapeutic impact of monotropein on atherosclerosis and elucidate its specific target.
5.Monotropein resists atherosclerosis by reducing inflammation, oxidative stress, and abnormal proliferation and migration of vascular smooth muscle cells
Hongliang LI ; Bingqian YE ; Jiping TIAN ; Bofan WANG ; Yiwen ZHA ; Shuying ZHENG ; Tan MA ; Wenwen ZHUANG ; Won Sun PARK ; Jingyan LIANG
The Korean Journal of Physiology and Pharmacology 2025;29(2):245-255
Monotropein is a compound classified into iridoid which is found in herbaceous plants Morindae officinalis. It possesses anti-inflammatory, antioxidant, and anti-osteoarthritic activities. Previous study indicates that monotropein may have the potential to combat cardiovascular disease, although the related mechanism remains unclear. In this study, we constructed the model of atherosclerosis by oxidized low density lipoprotein-induced vascular smooth muscle cells and LDLR –/–mice given high-fat diet to investigate the effects of monotropein on atherosclerosis.Our results showed that monotropein treatment significantly reduced the area of atherosclerotic plaques and necrotic cores in mice, inhibited the proliferation and migration of vascular smooth muscle cells, and reduced inflammatory responses and oxidative stress, which in turn alleviated atherosclerosis. In addition, we found that monotropein reduced the expression levels of P-NF-κB and P-AP-1. In conclusion, our data suggest that monotropein inhibited the proliferation and migration of vascular smooth muscle cells by mediating the activity of NF-κB, AP-1, reducing the level of inflammation and oxidative stress, and thus resisting the development of atherosclerosis. These findings demonstrate the efficacious therapeutic impact of monotropein on atherosclerosis and elucidate its specific target.
6.Therapeutic mechanism of of Erlong Zuoci Pills on oxidative stress in HEI-OC1 cells
Guoxia LU ; Yunshuang GU ; Yiwen ZHENG ; Ying PENG ; Jiye A ; Guangji WANG ; Guangji SUN
Journal of China Pharmaceutical University 2025;56(2):188-195
To the present study aimed to investigate the protective effects of Erlong Zuoci Pills on oxidative stress induced by hydrogen peroxide (H2O2) in House Ear Institute-Organ of Corti 1 (HEI-OC1) and to explore the mechanism by cellular metabolomics. There were 6 groups in the experiment: the control group, model group, three dose groups of ELZC (low, medium, and high), and positive control ascorbic acid group. The oxidative stress injury model was established in the HEI-OC1 by inducing 0.9 mmol/L H2O2 for 12 h. The proliferation of HEI-OC1 cells was observed by CCK-8 assay; the contents and activity of lactate hydrogenase (LDH), reactive oxygen species (ROS), and superoxide dismutase (SOD) in HEI-OC1 cells were detected by corresponding kits. Finally, the endogenous substances of cells were analyzed from the perspective of metabolomics. Compared with the model group, ELZC groups could significantly increase the cell proliferation rate after administration. Moreover, they could also ameliorate the increase of ROS and LDH content and the decrease of antioxidant enzyme SOD caused by H2O2. Metabolomic results revealed significant differences among multiple groups in the scores of partial least squares discriminant analysis. The ELZC group could relocate the model group back to the control group. The metabolic regulation of ELZC on oxidative stress in HEI-OC1 cells mainly affects nucleotide metabolism and amino acid metabolism. In summary, the results indicate that ELZC exhibits protective effects on H2O2-induced oxidative stress in HEI-OC1 cells. Additionally, this protective effect may be produced by increasing the content of amino acids such as uridine and phenylalanine, thereby regulating pathways such as pyrimidine metabolism, phenylalanine metabolism, biosynthesis of phenylalanine, tyrosine, and tryptophan, and histidine metabolism.
7.Construction and application of a deep learning-based assistant system for corneal in vivo confocal microscopy images recognition
Yulin YAN ; Weiyan JIANG ; Simin CHENG ; Yiwen ZHOU ; Yi YU ; Biqing ZHENG ; Yanning YANG
Chinese Journal of Experimental Ophthalmology 2024;42(2):129-135
Objective:To construct an artificial intelligence (AI)-assisted system based on deep learning for corneal in vivo confocal microscopy (IVCM) image recognition and to evaluate its value in clinical applications. Methods:A diagnostic study was conducted.A total of 18 860 corneal images were collected from 331 subjects who underwent IVCM examination at Renmin Hospital of Wuhan University and Zhongnan Hospital of Wuhan University from May 2021 to September 2022.The collected images were used for model training and testing after being reviewed and classified by corneal experts.The model design included a low-quality image filtering model, a corneal image diagnosis model, and a 4-layer identification model for corneal epithelium, Bowman membrane, stroma, and endothelium, to initially determine normal and abnormal corneal images and corresponding corneal layers.A human-machine competition was conducted with another 360 database-independent IVCM images to compare the accuracy and time spent on image recognition by three senior ophthalmologists and the AI system.In addition, 8 trainees without IVCM training and with less than three years of clinical experience were selected to recognize the same 360 images without and with model assistance to analyze the effectiveness of model assistance.This study adhered to the Declaration of Helsinki.The study protocol was approved by the Ethics Committee of Renmin Hospital of Wuhan University (No.WDRY2021-K148).Results:The accuracy of this diagnostic model in screening high-quality images was 0.954.Its overall accuracy in identifying normal/abnormal corneal images was 0.916 and 0.896 in the internal and external test sets, respectively.Its accuracy reached 0.983, 0.925 in the internal test sets and 0.988, 0.929 in the external test sets in identifying corneal layers of normal and abnormal images, respectively.In the human-machine competition, the overall recognition accuracy of the model was 0.878, which was similar to the average accuracy of the three senior physicians and was approximately 300 times faster than the experts in recognition speed.Trainees assisted by the system achieved an accuracy of 0.816±0.043 in identifying corneal layers of normal and abnormal images, which was significantly higher than 0.669±0.061 without model assistance ( t=6.304, P<0.001). Conclusions:A deep learning-based assistant system for corneal IVCM image recognition is successfully constructed.This system can discriminate normal/abnormal corneal images and diagnose the corresponding corneal layer of the images, which can improve the efficiency of clinical diagnosis and assist doctors in training and learning.
8.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
9.Autophagy and neurological diseases
Yuying LIANG ; Yong HUANG ; Junsheng LIU ; Yilin OU ; Yiwen LI ; Rui ZHANG ; Zheng LI ; Zhinan ZHANG
Chinese Journal of Comparative Medicine 2024;34(3):111-119
Autophagy is the main degradation and recycling pathway for abnormal aggregates and damaged organelles in cells,and it maintains the normal metabolic balance and material renewal in cells.Autophagy has neuroprotective effects and can affect the functional state of the nervous system by regulating homeostasis,development,apoptosis,and other physiological processes of neurons and glial cells.In recent years,a large number of studies have shown that nervous system diseases are closely related to abnormal autophagy,and inhibition or overactivation of autophagy affects the occurrence and development of depression,neurodegenerative diseases,and schizophrenia.Understanding the mechanisms of autophagy in nervous system diseases is of great significance for their prevention and treatment.This paper mainly reviews the current progress of autophagy research and the above diseases of the nervous system,providing a reference for further research into these diseases.
10.The publication of quality control data for gastric cancer surgery promotes the improvement of gastric cancer surgery level:based on the analysis of quality control data for gastric cancer in Jiangsu Province,2020-2022
Linjun WANG ; Yiwen XIA ; Zheng LI ; Qingya LI ; Diancai ZHANG ; Hao XU ; Li YANG ; Jun SONG ; Wenxian GUAN ; Zekuan XU
Tumor 2024;44(2):136-145
Objective:To collect and analyze the quality control data of gastric cancer surgery in Jiangsu Province from 2020 to 2022,and study the role of publishing surgical quality control data in promoting the improvement of gastric cancer surgery of China. Methods:An online questionnaire was created and distributed to the members of Jiangsu Gastric Cancer Union(JSGCU).The questionnaire collected information including the basic situation of hospital,the diagnosis and treatment of early gastric cancer,advanced gastric cancer and metastatic gastric cancer,the digestive tract reconstruction,the surgical safety,the economic indicators,and so on. Results:The quality control data of gastric cancer surgery in Jiangsu Province from 2020 to 2022 were consistently collected and published.The data analysis results show that there was a gradual increase in the percent of patients with stage Ⅰ gastric cancer,reflecting the success efforts of early screening and diagnosis.Laparoscopic surgery showed a steady increase and became the mainstream approach for curative surgery of gastric cancer in Jiangsu Province.The percent of hospital with lymph node dissection≥30 was also increased.Different locations of gastric cancer exhibited specific patterns in the choice of anastomosis methods after curative surgery.The rate of grade 3 or higher complications in laparoscopic gastric cancer surgery was slightly lower than that in open surgery.For patients experiencing complications,their postoperative hospitalization duration and expenditure were significantly higher.Finally,there was a gradual increase in the proportion of hospital choosing to close the mesentery during gastric cancer surgery. Conclusion:The publication of the quality control data of gastric cancer surgery in Jiangsu Province has driven the improvement of gastric cancer surgery standards of China.

Result Analysis
Print
Save
E-mail