1.Experience of LI Diangui in Treating Gastroesophageal Reflux Disease Based on the Theory of Turbidity-Toxin in Liver
Shiyue LIANG ; Mengqi GAO ; Yansheng LIU ; Minan BAI ; Yingying LOU ;
Journal of Traditional Chinese Medicine 2025;66(16):1640-1644
		                        		
		                        			
		                        			This paper summarized the clinical experience of Prof. LI Diangui in treating gastroesophageal reflux disease (GERD) based on the theory of turbidity-toxin in liver. It is believed that internal accumulation of turbidity-toxin and liver depression with stomach counterflow are the main pathogenesis of GERD, and thus the therapeutic methods of resolving turbidity and resolving toxins, regulating the liver and harmonizing the stomach are proposed. In clinical practice, GERD is divided into the early stage, middle stage and late stage. For the early stage, the modified Huazhuo Shugan Hewei Formula (化浊疏肝和胃方) is used to regulate qi and remove turbidity, soothe the liver and harmonize the stomach; for the middle stage, the modified Huazhuo Qingre Zhisuan Formula (化浊清热制酸方) is applied to clear heat, direct the turbid downward, and resolve toxins; for the late stage, the modified Yiwei Decoction (益胃汤) is adopted to replenish qi, nourish yin and simultaneously resolve turbidity-toxin. Throughout the treatment process, attention should be paid to protecting the spleen and stomach, and the medication could be modified according to changes of individual condition. 
		                        		
		                        		
		                        		
		                        	
2.SHI Zaixiang's Clinical Experience in Using Chaihu Guizhi Ganjiang Decoction (柴胡桂枝干姜汤) to Treat High Fever in Sepsis
Tingting ZHU ; Yingying LIU ; Hailan CUI ; Zhiying REN ; Mingjing SHAO ; Yan BIAN ; Liyan WANG ; Zhenjie CHEN ; Yuan LIU ;
Journal of Traditional Chinese Medicine 2025;66(16):1645-1648
		                        		
		                        			
		                        			This paper summarizes Professor SHI Zaixiang's clinical experience in treating high fever caused by sepsis using Chaihu Guizhi Ganjiang Decoction (柴胡桂枝干姜汤). He holds that the key pathogenesis of sepsis involves constrained heat in the shaoyang and internal accumulation of water and fluids. The clinical manifestations such as high fever, chills, and alternating sensations of cold and heat are attributed to pathogenic heat constrained in the shaoyang. Meanwhile, soft tissue edema and serous cavity effusions are due to shaoyang dysfunction and internal water retention. In clinical practice, treating sepsis-related high fever requires addressing both the shaoyang-constrained heat and the associated edema and effusions. The therapeutic approach focuses on harmonizing the shaoyang and resolving internal fluids, using Chaihu Guizhi Ganjiang Decoction as the base formula with flexible modifications. Professor SHI emphasizes that this formula shows a rapid antipyretic effect, particularly in cases where multiple anti-infective treatments have failed. 
		                        		
		                        		
		                        		
		                        	
3.The Applications and Challenges of Generative Artificial Intelligence in Theoretical and Case Analysis Assessment for Resident Physician Education
Yuankai ZHOU ; Jun SUN ; Shengjun LIU ; Yingying YANG ; Siyi YUAN ; Huaiwu HE ; Yun LONG
Medical Journal of Peking Union Medical College Hospital 2025;16(5):1352-1356
Generative artificial intelligence (GAI) represents a prominent research focus in medicine, with medical education being a key application area. GAI demonstrates potential to enhance residency training efficacy through personalized instruction, automated assessment item generation, question bank updating, and intelligent scoring systems. However, current limitations exist regarding output accuracy and content consistency. To address these constraints, strategic measures are required: continuous GAI model refinement, development of standardized usage guidelines, enhanced data quality control, and implementation of human verification protocols for generated content. Concurrently, residents should proactively acquire GAI utilization skills to strengthen the practical application of theoretical knowledge. With these advancements, GAI is anticipated to evolve into a valuable asset for improving the efficiency and quality of residency training programs.
4.Macrophage efferocytosis:a new target for the treatment of obesity-related metabolic diseases
Fengying YANG ; Yuqing ZHAO ; Huijuan YOU ; Pengyi ZHANG ; Yan CHEN ; Qinglu WANG ; Yingying LIU
Chinese Journal of Tissue Engineering Research 2025;29(2):430-440
		                        		
		                        			
		                        			BACKGROUND:Dysfunction of macrophage efferocytosis can induce local and systemic inflammatory damage and is associated with a variety of obesity-related metabolic diseases.Moreover,compounds targeting efferocytosis have shown good therapeutic effects. OBJECTIVE:By reviewing the effects of obesity on macrophage efferocytosis,to analyze the key mechanism by which obesity inhibits efferocytosis,to summarize the research progress in compounds targeting efferocytosis to treat obesity-related metabolic diseases,so as to provide new ideas for fully understanding efferocytosis and its relationship with metabolic diseases,aiming to provide new strategies for disease prevention and treatment. METHODS:The English search terms were"efferocytosis,metabolism,obesity,obese,atherosclerosis,non-alcoholic steatohepatitis,neurodegeneration,tumor,osteoarthritis,diabetes,compound,medicine,treatment,"which were used for literature retrieval in PubMed and Web of Science.The Chinese search term was"efferocytosis,"which was used for literature retrieval in CNKI,VIP and WanFang datebases.Ninety-nine papers were finally included in the review analysis after a rigorous screening process. RESULTS AND CONCLUSION:In the process of efferocytosis,the"Find me"and"Eat me"processes involving a large number of apoptotic cell derived factors are mainly regulated by apoptotic cells.The efferocytosis factor involved in cytoskeletal remodeling and digestion are mainly derived from macrophages,which are crucial for efferocytosis activity.These results suggest that the"Find me"and"Eat me"factors mainly reflect the condition of apoptosis,and it is more scientific to select the expression of factors involved in cytoskeletal remodeling and digestion when evaluating the efferocytosis activity of macrophages.Obesity inhibits efferocytosis,and shows an inhibitory effect on most digestive factors,but has a stress-induced activation effect on most"Find me,""Eat me"and cytoskeletal recombination factors,which further indicates the decisive effect of digestive stage on efferocytosis and suggests that it is not reliable for some studies to evaluate the efferocytosis based on the increased expression of"Find me"and"Eat me"factors.Targeting cytokines in the digestive phase may be more effective when discussing future intervention strategies targeting macrophages efferocytosis.The efferocytosis activators of macrophages are effective in the treatment of various metabolic diseases,but the efferocytosis inhibitors in tumor tissue show good anticancer effects,suggesting that the role of efferocytosis should be rationally evaluated according to the characteristics of tissue inflammation.Efferocytosis is a relatively new concept proposed in 2003,with a short research history and complex efferocytosis factors.Current studies on obesity and efferocytosis only involve a tip of the iceberg and most of them are at a superficial level and a large number of scientific experiments are needed to further validate the mechanisms.
		                        		
		                        		
		                        		
		                        	
5.Current Status and Prospects of Research on the Potential Neurobiological Mechanisms of Acupuncture in the Treatment of Tobacco Dependence
Shumin CHEN ; Jin CHANG ; Chaoren TAN ; Hao ZHU ; Jinsheng YANG ; Zhao LIU ; Yingying WANG
Journal of Traditional Chinese Medicine 2025;66(4):421-426
		                        		
		                        			
		                        			This paper comprehensively discusses on the potential neurobiological mechanisms of acupuncture in the treatment of tobacco dependence, focusing on three important aspects, including acupuncture's regulation of tobacco dependence behavior, effects of acupuncture on withdrawal syndrome, and the role of acupuncture in preventing relapse. It is found that acupuncture can inhibit drug-seeking behavior by regulating the reward pathway and related neurons, such as dopamine, thus modulating tobacco dependence behavior. It also alleviates withdrawal symptoms by improving the oral environment of smokers and reducing negative emotions after quitting. Furthermore, acupuncture can prevent relapse by decreasing brain network activity related to smoking cravings and improving cognitive brain functions like addiction memory. Currently, research on the specific neurobiological mechanism of acupuncture in treating tobacco dependence and the involved neural circuits is limited. Future research directions are proposed, including the evaluation of clinical effects, exploration of specific therapeutic mechanisms, investigation of brain pathology, and strengthening the exploration of brain functions. Additionally, combining modern technologies to clarify the neural circuits involved in acupuncture intervention will provide a basis for acupuncture treatment of tobacco addiction. 
		                        		
		                        		
		                        		
		                        	
6.Effects and mechanism of astilbin on renal injury in chronic renal failure rats
Xiaowei GAO ; Yingying LIU ; Cong HAN ; Shifei HAO
China Pharmacy 2025;36(4):434-439
		                        		
		                        			
		                        			OBJECTIVE To investigate the effect and potential mechanism of astilbin (AST) on renal injury in chronic renal failure (CRF) rats based on the Jagged-1/Notch-1 signaling pathway. METHODS CRF model was constructed by 5/6 nephrotomy. The successfully modeled rats were randomly separated into Model group, AST low-dose group (AST-L group), AST high-dose group (AST-H group), high-dose of AST+Notch pathway activator (Jagged-1/FC chimerin, referred to as “JFC”) group (AST-H+ JFC group), and control group (CK group) for open surgery without resection was set up, with 10 rats in each group. The rats in the AST-L group and AST-H group were given 40 and 80 mg/kg AST, respectively; the rats in the AST-H+JFC group were simultaneously given 80 mg/kg AST and 0.5 mg/kg JFC, and the rats in the CK group and Model group were given an equal volume of normal saline, once a day, for 4 weeks. After the last administration, the serum levels of blood urea nitrogen (BUN), serum creatinine (SCr), and the level of 24 h urinary protein (UP) in urine, as well as the serum levels of lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-10 in each group were detected. The morphology and fibrosis of renal tissue were observed. The content of adenosine triphosphate (ATP) and the activities of sodium-potassium ATPase and calcium-magnesium ATPase in mitochondria of renal tissue were detected. The protein expressions of transforming growth factor- β (TGF- β), hypoxia-inducible factor-1α (HIF-1α), α-smooth muscle actin (α-SMA), cleaved-caspase-3, Jagged-1 and Notch-1 in renal tissue were also observed. RESULTS Compared with CK group, the renal tissue of rats in the Model group was obviously damaged, renal tissue fibrosis was severe; the serum BUN and SCr levels, urine UP level, serum 4 LDH, TNF-α and IL-6 levels, as well as the protein expressions of TGF-β, HIF-1α, α-SMA, cleaved-caspase-3, Jagged-1 and Notch-1 in renal tissue were significantly increased, while the serum IL-10 level, ATP content and activities of sodium-potassium ATPase and calcium-magnesium ATPase in mitochondria of renal tissue were significantly decreased (P<0.05). Compared with Model group, the renal tissue damage and fibrosis in the AST groups were reduced, the serum BUN and SCr levels, urine UP level, serum LDH, TNF-α and IL-6 levels, and the protein expressions of TGF-β, HIF-1α, α-SMA, cleaved-caspase-3, Jagged-1 and Notch-1 were significantly decreased, while the serum IL-10 level, ATP content and the activities of sodium-potassium ATPase and calcium-magnesium ATPase in mitochondria were significantly increased; the changes in the aforementioned indicators in AST- H group were more significant than those in the AST-L group(P<0.05). JFC could significantly reverse the improvement effect of high dose of AST on renal injury in CRF rats (P<0.05). CONCLUSIONS AST can reduce inflammation in CRF rats, alleviate renal tissue damage and fibrosis, and improve renal mitochondrial capacity metabolism, possibly by inhibiting the Jagged-1/Notch-1 signaling pathway.
		                        		
		                        		
		                        		
		                        	
7.Multidimensional Analysis of Mechanisms of Nuciferine Against Cerebral Ischemia Based on Transcriptomic Data
Yingying QIN ; Peng LI ; Sha CHEN ; Yan LIU ; Jintang CHENG ; Qingxia XU ; Guohua WANG ; Jing ZHOU ; An LIU ; Chang CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):184-191
		                        		
		                        			
		                        			ObjectiveStudies have shown that nuciferine has anti-cerebral ischemia effect, but the specific mechanism of action has not been elaborated. Based on the transcriptome results, the pharmacological mechanism of nuciferine against cerebral ischemia was analyzed from multiple dimensions including tissue, cell, pathological process, biological process and signaling pathway. MethodsThirty SD rats were randomly divided into the sham group, model group and nuciferine group(40 mg·kg-1) according to weight. Except for the sham group, the model of middle cerebral artery occlusion(MCAO) was established by thread embolization method after 30 min of administration in the other two groups. Twenty-four hours after surgery, transcriptome sequencing was used to detect the gene expression profiles in the cortex penumbra of rat cerebral tissue, and gene ontology(GO) and kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis were performed for differentially expressed genes. The mechanismof nuciferine against cerebral ischemia was analyzed from 5 dimensions of tissue, cell, pathological process, biological process and signaling pathway by the transcriptome-based multi-scale network pharmacology platform(TMNP). ResultsTranscriptome sequencing and gene quantitative analysis showed that 667 genes were significantly reversed by nuciferine. Further enrichment analysis of KEGG and GO suggested that the pathways of nuciferine involved regulating stress response, ion transport, cell proliferation and differentiation, and synaptic function. TMNP research found that at the tissue level, nuciferine could significantly improve the cerebral tissue injury caused by ischemia. At the cellular and pathological levels, nuciferine could play an anti-cerebral ischemia role by improving the state of various nerve cells, mobilizing immune cells, regulating inflammation. And at the level of biological processes and signaling pathways, nuciferine mainly acted on the processes such as vascular remodeling, inflammation-related signaling pathways, and synaptic signaling. ConclusionCombined with the results of transcriptome sequencing, gene quantitative analysis and TMNP, the mechanism of nuciferine against cerebral ischemia may be related to processes such as intervening in stress response and inflammation, affecting vascular remodeling and regulating synaptic function. These results can provide a basis and reference for further study of the pharmacological mechanism of nuciferine against cerebral ischemia. 
		                        		
		                        		
		                        		
		                        	
8.Impact of Antibody Immune Response and Immune Cells on Osteoporosis and Fractures
Kangkang OU ; Jiarui CHEN ; Jichong ZHU ; Weiming TAN ; Cheng WEI ; Guiyu LI ; Yingying QIN ; Chong LIU
Clinics in Orthopedic Surgery 2025;17(3):530-545
		                        		
		                        			 Background:
		                        			The immune system plays a critical role in the development and progression of osteoporosis and fractures. However, the causal relationships between antibody immune responses, immune cells, and these bone conditions remain unclear. This study aimed to explore these relationships using Mendelian randomization (MR) analysis. 
		                        		
		                        			Methods:
		                        			We collected complete blood count data from patients with fractures and healthy individuals and analyzed their differences. Then, we conducted a 2-sample, 2-step MR analysis to investigate the causal effects of antibody immune responses on osteoporosis and fractures, using inverse-variance weighted (IVW) as the primary method. We also explored whether immune cells mediate the pathway between antibodies and osteoporosis or fractures. Finally, we analyzed the functions and expression levels of key genes involved. 
		                        		
		                        			Results:
		                        			Overall, the fracture group exhibited increased white blood cell count, absolute neutrophil count, absolute monocyte count, platelet count, and their respective proportions, while absolute lymphocyte count, absolute eosinophil count, absolute basophil count, red blood cell count, and their proportions were decreased. We identified 44 causal relationships between antibodies and osteoporosis or fractures, with 7 supported by multiple MR methods, and 5 showing odds ratios significantly deviating from 1 in the IVW analysis. Epstein-Barr virus-related antibodies had a notable impact on osteoporosis and fractures. The human leukocyte antigen (HLA) gene family, particularly HLA-DPB1, emerged as a significant risk factor. However, immune cells were not found to mediate these effects. 
		                        		
		                        			Conclusions
		                        			This study elucidated the causal relationships between antibody immune responses, immune cells, and osteoporosis or fractures. The HLA gene family plays a crucial role in the interaction between antibodies and these bone conditions, with HLA-DPB1 identified as a key risk gene. Immune cells do not serve as mediators in this process. These findings provide valuable insights for future research. 
		                        		
		                        		
		                        		
		                        	
9.Exon Sequencing of HNF1β in Chinese Patients with Early-Onset Diabetes
Siqian GONG ; Hong LIAN ; Yating LI ; Xiaoling CAI ; Wei LIU ; Yingying LUO ; Meng LI ; Si-min ZHANG ; Rui ZHANG ; Lingli ZHOU ; Yu ZHU ; Qian REN ; Xiuying ZHANG ; Jing CHEN ; Jing WU ; Xianghai ZHOU ; Xirui WANG ; Xueyao HAN ; Linong JI
Diabetes & Metabolism Journal 2025;49(2):321-330
		                        		
		                        			 Background:
		                        			Maturity-onset diabetes of the young (MODY) due to variants of hepatocyte nuclear factor 1-beta (HNF1β) (MODY5) has not been well studied in the Chinese population. This study aimed to estimate its prevalence and evaluate the application of a clinical screening method (Faguer score) in Chinese early-onset diabetes (EOD) patients. 
		                        		
		                        			Methods:
		                        			Among 679 EOD patients clinically diagnosed with type 2 diabetes mellitus (age at diagnosis ≤40 years), the exons of HNF1β were sequenced. Functional impact of rare variants was evaluated using a dual-luciferase reporter system. Faguer scores ≥8 prompted multiplex ligation-dependent probe amplification (MLPA) for large deletions. Pathogenicity of HNF1β variants was assessed following the American College of Medical Genetics and Genomics (ACMG) guidelines. 
		                        		
		                        			Results:
		                        			Two rare HNF1β missense mutations (E105K and G454R) were identified by sequencing in five patients, showing functional impact in vitro. Another patient was found to have a whole-gene deletion by MLPA in 22 patients with the Faguer score above 8. Following ACMG guidelines, six patients carrying pathogenic or likely pathogenic variant were diagnosed with MODY5. The estimated prevalence of MODY5 in Chinese EOD patients was approximately 0.9% or higher. 
		                        		
		                        			Conclusion
		                        			MODY5 is not uncommon in China. The Faguer score is helpful in deciding whether to perform MLPA analysis on patients with negative sequencing results. 
		                        		
		                        		
		                        		
		                        	
10.Impact of Antibody Immune Response and Immune Cells on Osteoporosis and Fractures
Kangkang OU ; Jiarui CHEN ; Jichong ZHU ; Weiming TAN ; Cheng WEI ; Guiyu LI ; Yingying QIN ; Chong LIU
Clinics in Orthopedic Surgery 2025;17(3):530-545
		                        		
		                        			 Background:
		                        			The immune system plays a critical role in the development and progression of osteoporosis and fractures. However, the causal relationships between antibody immune responses, immune cells, and these bone conditions remain unclear. This study aimed to explore these relationships using Mendelian randomization (MR) analysis. 
		                        		
		                        			Methods:
		                        			We collected complete blood count data from patients with fractures and healthy individuals and analyzed their differences. Then, we conducted a 2-sample, 2-step MR analysis to investigate the causal effects of antibody immune responses on osteoporosis and fractures, using inverse-variance weighted (IVW) as the primary method. We also explored whether immune cells mediate the pathway between antibodies and osteoporosis or fractures. Finally, we analyzed the functions and expression levels of key genes involved. 
		                        		
		                        			Results:
		                        			Overall, the fracture group exhibited increased white blood cell count, absolute neutrophil count, absolute monocyte count, platelet count, and their respective proportions, while absolute lymphocyte count, absolute eosinophil count, absolute basophil count, red blood cell count, and their proportions were decreased. We identified 44 causal relationships between antibodies and osteoporosis or fractures, with 7 supported by multiple MR methods, and 5 showing odds ratios significantly deviating from 1 in the IVW analysis. Epstein-Barr virus-related antibodies had a notable impact on osteoporosis and fractures. The human leukocyte antigen (HLA) gene family, particularly HLA-DPB1, emerged as a significant risk factor. However, immune cells were not found to mediate these effects. 
		                        		
		                        			Conclusions
		                        			This study elucidated the causal relationships between antibody immune responses, immune cells, and osteoporosis or fractures. The HLA gene family plays a crucial role in the interaction between antibodies and these bone conditions, with HLA-DPB1 identified as a key risk gene. Immune cells do not serve as mediators in this process. These findings provide valuable insights for future research. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail