1.Changes and Trends in the microbiological-related standards in the Chinese Pharmacopoeia 2025 Edition
FAN Yiling ; ZHU Ran ; YANG Yan ; JIANG Bo ; SONG Minghui ; WANG Jing ; LI Qiongqiong ; LI Gaomin ; WANG Shujuan ; SHAO Hong ; MA Shihong ; CAO Xiaoyun ; HU Changqin ; MA Shuangcheng, ; YANG Meicheng
Drug Standards of China 2025;26(1):093-098
Objective: To systematically analyze the revisions content and technological development trends of microbiological standards in the Chinese Pharmacopoeia (ChP) 2025 Edition, and explore its novel requirements in risk-based pharmaceutical product lifecycle management.
Methods: A comprehensive review was conducted on 26 microbiological-related standards to summarize the revision directions and scientific implications from perspectives including the revision overview, international harmonization of microbiological standards, risk-based quality management system, and novel tools and methods with Chinese characteristics.
Results: The ChP 2025 edition demonstrates three prominent features in microbiological-related standards: enhanced international harmonization, introduced emerging molecular biological technologies, and established a risk-based microbiological quality control system.
Conclusion: The new edition of the Pharmacopoeia has systematically constructed a microbiological standard system, which significantly improves the scientificity, standardization and applicability of the standards, providing a crucial support for advancing the microbiological quality control in pharmaceutical industries of China.
2.Research progress of metabolomics in age-related macular degeneration
Feng WANG ; Chenghong LAN ; Yiling LIU ; Yi SHAO
International Eye Science 2025;25(5):760-764
Age-related macular degeneration(ARMD)is a common multifactorial disease among the elderly, which may lead to irreversible vision loss; however, the pathogenesis of ARMD is still unclear. Metabolomics is a relatively new “omics” technique that can provide qualitative and quantitative information about low molecular weight metabolites that make up biological systems, thereby revealing the physiological or pathological state of cell or tissue samples at specific time points. In recent years, increasing evidence suggests that metabolic dysfunction plays an important role in the development and progression of ARMD. Metabolic pathway dysregulation involves lipid metabolism, nucleotide metabolism, amino acid metabolism, and energy metabolism, which may play important roles in the occurrence and development of ARMD. The retina is one of the most metabolically active tissues in the human body, so using metabolomics techniques to measure molecular changes in ARMD will further enhance our understanding of the pathogenesis. This will provide important insights for the prevention and treatment of ARMD, This article reviews the application of metabolomics in ARMD.
3.The Ferroptosis-inducing Compounds in Triple Negative Breast Cancer
Xin-Die WANG ; Da-Li FENG ; Xiang CUI ; Su ZHOU ; Peng-Fei ZHANG ; Zhi-Qiang GAO ; Li-Li ZOU ; Jun WANG
Progress in Biochemistry and Biophysics 2025;52(4):804-819
Ferroptosis, a programmed cell death modality discovered and defined in the last decade, is primarily induced by iron-dependent lipid peroxidation. At present, it has been found that ferroptosis is involved in various physiological functions such as immune regulation, growth and development, aging, and tumor suppression. Especially its role in tumor biology has attracted extensive attention and research. Breast cancer is one of the most common female tumors, characterized by high heterogeneity and complex genetic background. Triple negative breast cancer (TNBC) is a special type of breast cancer, which lacks conventional breast cancer treatment targets and is prone to drug resistance to existing chemotherapy drugs and has a low cure rate after progression and metastasis. There is an urgent need to find new targets or develop new drugs. With the increase of studies on promoting ferroptosis in breast cancer, it has gradually attracted attention as a treatment strategy for breast cancer. Some studies have found that certain compounds and natural products can act on TNBC, promote their ferroptosis, inhibit cancer cells proliferation, enhance sensitivity to radiotherapy, and improve resistance to chemotherapy drugs. To promote the study of ferroptosis in TNBC, this article summarized and reviewed the compounds and natural products that induce ferroptosis in TNBC and their mechanisms of action. We started with the exploration of the pathways of ferroptosis, with particular attention to the System Xc--cystine-GPX4 pathway and iron metabolism. Then, a series of compounds, including sulfasalazine (SAS), metformin, and statins, were described in terms of how they interact with cells to deplete glutathione (GSH), thereby inhibiting the activity of glutathione peroxidase 4 (GPX4) and preventing the production of lipid peroxidases. The disruption of the cellular defense against oxidative stress ultimately results in the death of TNBC cells. We have also our focus to the realm of natural products, exploring the therapeutic potential of traditional Chinese medicine extracts for TNBC. These herbal extracts exhibit multi-target effects and good safety, and have shown promising capabilities in inducing ferroptosis in TNBC cells. We believe that further exploration and characterization of these natural compounds could lead to the development of a new generation of cancer therapeutics. In addition to traditional chemotherapy, we discussed the role of drug delivery systems in enhancing the efficacy and reducing the toxicity of ferroptosis inducers. Nanoparticles such as exosomes and metal-organic frameworks (MOFs) can improve the solubility and bioavailability of these compounds, thereby expanding their therapeutic potential while minimizing systemic side effects. Although preclinical data on ferroptosis inducers are relatively robust, their translation into clinical practice remains in its early stages. We also emphasize the urgent need for more in-depth and comprehensive research to understand the complex mechanisms of ferroptosis in TNBC. This is crucial for the rational design and development of clinical trials, as well as for leveraging ferroptosis to improve patient outcomes. Hoping the above summarize and review could provide references for the research and development of lead compounds for the treatment for TNBC.
4.Alleviation of Ulcerative Colitis by Shaoyaotang via Inhibiting Glycolysis Through SIRT6/HIF-1α Pathway
Yiling XIA ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Erle LIU ; Yiwen WANG ; Shaijin JIANG ; Yiqian YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):10-19
ObjectiveTo investigate the role of silent information regulatory protein (SIRT6)/hypoxia-inducible factor-1α (HIF-1α) pathway in regulating the reprogramming of glucose metabolism in ulcerative colitis (UC) and the mechanism of intervention of Shaoyaotang. MethodsForty-eight c57bL/6 mice were randomly divided into a blank group, a model group, a Mesalazine group (0.42 g·kg-1), a Shaoyaotang group (31.08 g·kg-1), an inhibitor group (OSS-128167, 50 mg·kg-1), and an inhibitor + Shaoyaotang group (50 mg·kg-1 OSS-128167 + 31.08 g·kg-1 Shaoyaotang). A UC model was established by the administration of 2.5% dextran sulfate sodium (DSS) solution for mice in other groups for 7 d, except for the blank group. The mice in each group were treated with saline, Mesalazine, Shaoyaotang, inhibitor, and inhibitor + Shaoyaotang, respectively, for 7 d. The mice were necropsied 24 h after the last administration of the drug. The blood was collected from the orbital region, and colon tissue was taken. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in colon tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to detect serum interleukin (IL)-10, IL-17, and IL-6 levels. A biochemical method was used to detect glucose and lactate dehydrogenase A (LDHA) levels. Immunohistochemistry (IHC) was employed to detect IL-22 and transforming growth factor-β1 (TGF-β1) levels in colon tissue, and Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were used to detect relative protein and mRNA expressions of SIRT6, HIF-1α, and LDHA. ResultsCompared with those of the blank group, disease activity index (DAI) scores of mice in the model group and inhibitor group were significantly increased (P<0.01). The length of colon tissue was significantly shortened, and colon tissue was congested and eroded. The pathohistological scores were significantly increased (P<0.01). The levels of serum inflammatory factors IL-17 and IL-6 were significantly elevated, and the levels of IL-10 were significantly decreased (P<0.01). The protein expressions of IL-22 and TGF-β1 were significantly reduced in colon tissue (P<0.01). The relative protein and mRNA expressions of SIRT6 were significantly decreased (P<0.01), and the relative protein and mRNA expressions of HIF-1α and LDHA and the contents of glucose and lactate were significantly elevated (P<0.01). The level of inflammation in the colon of the mice in the inhibitor group was more severe than that in the model group (P<0.01). Compared with the model group, the Mesalazine group, the Shaoyaotang group, and the inhibitor + Shaoyaotang group showed reduced colonic injury, significant decrease in serum IL-17 and IL-6, significant increase in IL-10 (P<0.01), significant increase in the protein expressions of IL-22 and TGF-β1 in colon tissue (P<0.01), significant increase in the protein expressions of SIRT6 and the relative mRNA expressions (P<0.01), and significant reduction in the protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate (P<0.01). Compared with those in the Shaoyaotang group, the serum IL-17 and IL-6 were significantly increased, and IL-10 was significantly decreased in the inhibitor + Shaoyaotang group (P<0.01). The protein expressions of IL-22 and TGF-β1 in colon tissue were significantly decreased (P<0.01). The expressions of SIRT6 protein and the relative mRNA expressions were significantly decreased (P<0.01). The protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate were significantly elevated (P<0.01). However, the difference between the Shaoyaotang group and the Mesalazine group was not significant. ConclusionShaoyaotang can effectively treat DSS-induced mice with UC through the SIRT6/HIF-1α pathway, and its mechanism of action may be related to the regulation of the SIRT6/HIF-1α pathway and glucose metabolism reprogramming and the inhibition of glycolysis.
5.Analysis of Medication Patterns for Ancient Epidemic Treatment Based on Data Mining
Peipei JIN ; Tongxing WANG ; Liping CHANG ; Bin HOU ; Ningxin HAN ; Xiaoqi WANG ; Zhenhua JIA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):287-294
ObjectiveExploring the formula rules of commonly used traditional Chinese medicines(TCMs) for epidemic treatment from the Qin and Han dynasties to the Qing dynasty through data mining, providing reference for the prevention and control of contemporary epidemics. MethodsThe articles on epidemic treatment in the electronic database of Chinese Medical Code V5.0 were systematically searched, and the contents such as source, dynasty, author, diagnosis, formula name, therapeutic method and efficacy, and composition of medicines from each article that met the inclusion criteria were extracted. Then, an Excel standardized database was established, and Python programs were used for data mining to summarize the frequency of commonly used medicines and perform hierarchical cluster analysis, Pearson correlation analysis, and association rule analysis. ResultsA total of 1 595 formulas were included, involving 558 TCMs. The efficacy of these medicines could be classified into two categories, namely, expeling pathogenic factors and reinforcing healthy Qi. According to the frequency deconstruction analysis, high-frequency medicines were mainly detoxification, Fu-organ dredging, aromatization and promoting blood circulation, followed by the medicines with the effect of treating the lungs, such as clearing the lungs and resolving phlegm, clearing heat and purging the lungs, relieving cough and asthma, and purging the lungs and relieving asthma. And the proportions of acrid-warm herbs and acrid-cold herbs varied in different periods. Hierarchical clustering and correlation analysis both suggested TCMs for expeling pathogenic factors and reinforcing healthy Qi often formed stable combinations with high association degrees. Association rule analysis showed that the core acrid-warm herb was mainly Ephedrae Herba, and the core acrid-cold herb was mainly Forsythiae Fructus, resulting in the core formulas of Maxing Shigantang and Yinqiaosan. ConclusionThroughout history, the prevention and control of epidemics have been based on the principle of "preserving healthy Qi and avoiding toxic Qi", focusing on the treatment of the causes and characteristics of epidemics through detoxification, Fu-organ dredging, and aromatization, emphasizing the use of Rhei Radix et Rhizoma and other herbs to dredge Fu-organ, eliminate toxins and pathogens, and playing the role of actively intervene with symptomatic medication. And based on the external manifestations of the body's struggle between evil and righteousness, diagnose and treatment according to syndrome differentiation was performed.
6.Alleviation of Ulcerative Colitis by Shaoyaotang via Inhibiting Glycolysis Through SIRT6/HIF-1α Pathway
Yiling XIA ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Erle LIU ; Yiwen WANG ; Shaijin JIANG ; Yiqian YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):10-19
ObjectiveTo investigate the role of silent information regulatory protein (SIRT6)/hypoxia-inducible factor-1α (HIF-1α) pathway in regulating the reprogramming of glucose metabolism in ulcerative colitis (UC) and the mechanism of intervention of Shaoyaotang. MethodsForty-eight c57bL/6 mice were randomly divided into a blank group, a model group, a Mesalazine group (0.42 g·kg-1), a Shaoyaotang group (31.08 g·kg-1), an inhibitor group (OSS-128167, 50 mg·kg-1), and an inhibitor + Shaoyaotang group (50 mg·kg-1 OSS-128167 + 31.08 g·kg-1 Shaoyaotang). A UC model was established by the administration of 2.5% dextran sulfate sodium (DSS) solution for mice in other groups for 7 d, except for the blank group. The mice in each group were treated with saline, Mesalazine, Shaoyaotang, inhibitor, and inhibitor + Shaoyaotang, respectively, for 7 d. The mice were necropsied 24 h after the last administration of the drug. The blood was collected from the orbital region, and colon tissue was taken. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in colon tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to detect serum interleukin (IL)-10, IL-17, and IL-6 levels. A biochemical method was used to detect glucose and lactate dehydrogenase A (LDHA) levels. Immunohistochemistry (IHC) was employed to detect IL-22 and transforming growth factor-β1 (TGF-β1) levels in colon tissue, and Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were used to detect relative protein and mRNA expressions of SIRT6, HIF-1α, and LDHA. ResultsCompared with those of the blank group, disease activity index (DAI) scores of mice in the model group and inhibitor group were significantly increased (P<0.01). The length of colon tissue was significantly shortened, and colon tissue was congested and eroded. The pathohistological scores were significantly increased (P<0.01). The levels of serum inflammatory factors IL-17 and IL-6 were significantly elevated, and the levels of IL-10 were significantly decreased (P<0.01). The protein expressions of IL-22 and TGF-β1 were significantly reduced in colon tissue (P<0.01). The relative protein and mRNA expressions of SIRT6 were significantly decreased (P<0.01), and the relative protein and mRNA expressions of HIF-1α and LDHA and the contents of glucose and lactate were significantly elevated (P<0.01). The level of inflammation in the colon of the mice in the inhibitor group was more severe than that in the model group (P<0.01). Compared with the model group, the Mesalazine group, the Shaoyaotang group, and the inhibitor + Shaoyaotang group showed reduced colonic injury, significant decrease in serum IL-17 and IL-6, significant increase in IL-10 (P<0.01), significant increase in the protein expressions of IL-22 and TGF-β1 in colon tissue (P<0.01), significant increase in the protein expressions of SIRT6 and the relative mRNA expressions (P<0.01), and significant reduction in the protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate (P<0.01). Compared with those in the Shaoyaotang group, the serum IL-17 and IL-6 were significantly increased, and IL-10 was significantly decreased in the inhibitor + Shaoyaotang group (P<0.01). The protein expressions of IL-22 and TGF-β1 in colon tissue were significantly decreased (P<0.01). The expressions of SIRT6 protein and the relative mRNA expressions were significantly decreased (P<0.01). The protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate were significantly elevated (P<0.01). However, the difference between the Shaoyaotang group and the Mesalazine group was not significant. ConclusionShaoyaotang can effectively treat DSS-induced mice with UC through the SIRT6/HIF-1α pathway, and its mechanism of action may be related to the regulation of the SIRT6/HIF-1α pathway and glucose metabolism reprogramming and the inhibition of glycolysis.
7.Analysis of Medication Patterns for Ancient Epidemic Treatment Based on Data Mining
Peipei JIN ; Tongxing WANG ; Liping CHANG ; Bin HOU ; Ningxin HAN ; Xiaoqi WANG ; Zhenhua JIA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):287-294
ObjectiveExploring the formula rules of commonly used traditional Chinese medicines(TCMs) for epidemic treatment from the Qin and Han dynasties to the Qing dynasty through data mining, providing reference for the prevention and control of contemporary epidemics. MethodsThe articles on epidemic treatment in the electronic database of Chinese Medical Code V5.0 were systematically searched, and the contents such as source, dynasty, author, diagnosis, formula name, therapeutic method and efficacy, and composition of medicines from each article that met the inclusion criteria were extracted. Then, an Excel standardized database was established, and Python programs were used for data mining to summarize the frequency of commonly used medicines and perform hierarchical cluster analysis, Pearson correlation analysis, and association rule analysis. ResultsA total of 1 595 formulas were included, involving 558 TCMs. The efficacy of these medicines could be classified into two categories, namely, expeling pathogenic factors and reinforcing healthy Qi. According to the frequency deconstruction analysis, high-frequency medicines were mainly detoxification, Fu-organ dredging, aromatization and promoting blood circulation, followed by the medicines with the effect of treating the lungs, such as clearing the lungs and resolving phlegm, clearing heat and purging the lungs, relieving cough and asthma, and purging the lungs and relieving asthma. And the proportions of acrid-warm herbs and acrid-cold herbs varied in different periods. Hierarchical clustering and correlation analysis both suggested TCMs for expeling pathogenic factors and reinforcing healthy Qi often formed stable combinations with high association degrees. Association rule analysis showed that the core acrid-warm herb was mainly Ephedrae Herba, and the core acrid-cold herb was mainly Forsythiae Fructus, resulting in the core formulas of Maxing Shigantang and Yinqiaosan. ConclusionThroughout history, the prevention and control of epidemics have been based on the principle of "preserving healthy Qi and avoiding toxic Qi", focusing on the treatment of the causes and characteristics of epidemics through detoxification, Fu-organ dredging, and aromatization, emphasizing the use of Rhei Radix et Rhizoma and other herbs to dredge Fu-organ, eliminate toxins and pathogens, and playing the role of actively intervene with symptomatic medication. And based on the external manifestations of the body's struggle between evil and righteousness, diagnose and treatment according to syndrome differentiation was performed.
8.Shaoyaotang Restores Th17/Treg Cell Balance by Regulating Glucose Metabolism Reprogramming in Treatment of Ulcerative Colitis
Yiwen WANG ; Yiling XIA ; Erle LIU ; Shaijin JIANG ; Bo ZOU ; Dongsheng WU ; Youwei XIAO ; Hui CAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):78-85
ObjectiveTo investigate the effect of Shaoyaotang on T helper cell 17/regulatory T lymphocyte(Th17/Treg) cell balance in ulcerative colitis and decipher the intervention mechanism based on glucose metabolism reprogramming. MethodsThe mouse model of ulcerative colitis was established by the dextran sulfate sodium (DSS) method. Forty-eight C57BL/6 mice were randomly allocated into normal, model, Western drug control (mesalazine, 0.39 g·kg-1·d-1), Shaoyaotang (15.54 g·kg-1·d-1), inhibitor (2-deoxy-D-glucose, 2-DG, 100 mg·kg-1·d-1), and inhibitor (2-DG, 100 mg·kg-1·d-1) + Shaoyaotang (15.54 g·kg-1·d-1) groups. Mice were administrated with the corresponding drugs by gavage for 7 days. The general conditions and the colon injury degree were observed 24 h after the last administration. The expression of interleukin (IL)-10 and IL-17 in the colon tissue was detected by immunohistochemical staining. Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were performed to determine the protein and mRNA levels, respectively, of hypoxia-inducing factor-1α (HIF-1α), lactate dehydrogenase (LDHA), and hexokinase 2 (HK2) in the colon tissue. Th17/Treg cell differentiation was detected by flow cytometry. Enzyme-linked immunosorbent assay was employed to measure the levels of lactic acid and glucose in the colon tissue and IL-10, IL-17, and IL-6 in the serum. ResultsCompared with the normal group, the model group showed decreases in body weight and disease activity index (DAI) (P<0.05), elevations in levels of HIF-1α, LDHA, HK2, IL-17, IL-6, Th17 cells, lactic acid, and glucose in the colon tissue (P<0.05), and declines in the levels of of IL-10 and Treg cells (P<0.05). Compared with the model group, the drug administration groups showed increases in body weight and DAI (P<0.05), declines in levels of HIF-1α, LDHA, HK2, IL-17, IL-6, Th17 cells, lactic acid, and glucose in the colon tissue (P<0.05), and rises in levels of IL-10 and Treg cells (P<0.05). Shaoyaotang+2-DG group had the most obvious effect. ConclusionShaoyaotang can relieve diarrhea and bloody stool in mice with ulcerative colitis by restoring the Th17/Treg cell balance via regulation of glucose metabolism reprogramming, thus playing a role in the treatment of ulcerative colitis.
9.Shaoyaotang Regulates Glucose Metabolism Reprogramming to Inhibit Macrophage Polarization Toward M1 Phenotype
Shaijin JIANG ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Yiwen WANG ; Yiling XIA ; Erle LIU ; Qi CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):86-93
ObjectiveTo explore the regulation of Shaoyaotang on glucose metabolism reprogramming of macrophages and the mechanism of this decoction in inhibiting macrophage polarization toward the M1 phenotype. MethodsHuman monocytic leukemia-1 (THP-1) cells were treated with 100 ng·L-1 phorbol myristate acetate for induction of macrophages as the normal control group. The cells treated with 100 ng·L-1 lipopolysaccharide combined with 20 ng·L-1 interferon (IFN)-γ for induction of M1-type macrophages were taken as the M1 model group. M1-type macrophages were treated with the blank serum, Shaoyaotang-containing serum, 0.5 mol·L-1 2-deoxy-D-glucose (2-DG), and Shaoyaotang-containing serum + 2-DG, respectively. After intervention, the expression of CD86 and CD206 was examined by flow cytometry. The levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, and transforming growth factor (TGF)-β were assessed by ELISA. Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of hypoxia-inducible factor-1 alpha (HIF-1α), glucose transporter 1 (GLUT1), hexokinase 2 (HK2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). ResultsCompared with that in the normal control group, the expression of CD86, the marker of M1-type macrophages, increased in the M1 model group and blank serum group (P<0.01), which indicated that the M1 inflammatory model was established successfully. In addition, the M1 model group was observed with up-regulated mRNA and protein levels of proinflammatory cytokines IL-6 and TNF-α and glycolysis-related factors HIF-1α, GLUT1, HK2, GAPDH, and PFKFB3 (P<0.01). Compared with the M1 model group, the Shaoyaotang-containing serum, 2-DG, and combined intervention groups showed decreased expression of CD86 (P<0.01), down-regulated mRNA and protein levels of proinflammatory factors IL-6 and TNF-α and glycolysis-related factors HIF-1α, GLUT1, HK2, GAPDH, and PFKFB3 produced by M1-type macrophages (P<0.01), increased expression of CD206 (marker of M2-type macrophages) (P<0.01), and elevated levels of IL-10 and TGF-β produced by M2-type macrophages (P<0.01). ConclusionShaoyaotang inhibits macrophage differentiation toward pro-inflammatory M1-type macrophages and promotes the differentiation toward anti-inflammatory M2-type macrophages by regulating glucose metabolism reprogramming. The evidence gives insights into new molecular mechanisms and targets for the treatment of ulcerative colitis with Shaoyaotang.
10.Shaoyaotang Restores Th17/Treg Cell Balance by Regulating Glucose Metabolism Reprogramming in Treatment of Ulcerative Colitis
Yiwen WANG ; Yiling XIA ; Erle LIU ; Shaijin JIANG ; Bo ZOU ; Dongsheng WU ; Youwei XIAO ; Hui CAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):78-85
ObjectiveTo investigate the effect of Shaoyaotang on T helper cell 17/regulatory T lymphocyte(Th17/Treg) cell balance in ulcerative colitis and decipher the intervention mechanism based on glucose metabolism reprogramming. MethodsThe mouse model of ulcerative colitis was established by the dextran sulfate sodium (DSS) method. Forty-eight C57BL/6 mice were randomly allocated into normal, model, Western drug control (mesalazine, 0.39 g·kg-1·d-1), Shaoyaotang (15.54 g·kg-1·d-1), inhibitor (2-deoxy-D-glucose, 2-DG, 100 mg·kg-1·d-1), and inhibitor (2-DG, 100 mg·kg-1·d-1) + Shaoyaotang (15.54 g·kg-1·d-1) groups. Mice were administrated with the corresponding drugs by gavage for 7 days. The general conditions and the colon injury degree were observed 24 h after the last administration. The expression of interleukin (IL)-10 and IL-17 in the colon tissue was detected by immunohistochemical staining. Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were performed to determine the protein and mRNA levels, respectively, of hypoxia-inducing factor-1α (HIF-1α), lactate dehydrogenase (LDHA), and hexokinase 2 (HK2) in the colon tissue. Th17/Treg cell differentiation was detected by flow cytometry. Enzyme-linked immunosorbent assay was employed to measure the levels of lactic acid and glucose in the colon tissue and IL-10, IL-17, and IL-6 in the serum. ResultsCompared with the normal group, the model group showed decreases in body weight and disease activity index (DAI) (P<0.05), elevations in levels of HIF-1α, LDHA, HK2, IL-17, IL-6, Th17 cells, lactic acid, and glucose in the colon tissue (P<0.05), and declines in the levels of of IL-10 and Treg cells (P<0.05). Compared with the model group, the drug administration groups showed increases in body weight and DAI (P<0.05), declines in levels of HIF-1α, LDHA, HK2, IL-17, IL-6, Th17 cells, lactic acid, and glucose in the colon tissue (P<0.05), and rises in levels of IL-10 and Treg cells (P<0.05). Shaoyaotang+2-DG group had the most obvious effect. ConclusionShaoyaotang can relieve diarrhea and bloody stool in mice with ulcerative colitis by restoring the Th17/Treg cell balance via regulation of glucose metabolism reprogramming, thus playing a role in the treatment of ulcerative colitis.

Result Analysis
Print
Save
E-mail