1.Cancer cell membrane-coated bacterial ghosts for highly efficient paclitaxel delivery against metastatic lung cancer.
Dandan LING ; Xueli JIA ; Ke WANG ; Qiucheng YAN ; Bochuan YUAN ; Lina DU ; Miao LI ; Yiguang JIN
Acta Pharmaceutica Sinica B 2024;14(1):365-377
Chemotherapy is one of the major approaches for the treatment of metastatic lung cancer, although it is limited by the low tumor delivery efficacy of anticancer drugs. Bacterial therapy is emerging for cancer treatment due to its high immune stimulation effect; however, excessively generated immunogenicity will cause serious inflammatory response syndrome. Here, we prepared cancer cell membrane-coated liposomal paclitaxel-loaded bacterial ghosts (LP@BG@CCM) by layer-by-layer encapsulation for the treatment of metastatic lung cancer. The preparation processes were simple, only involving film formation, electroporation, and pore extrusion. LP@BG@CCM owned much higher 4T1 cancer cell toxicity than LP@BG due to its faster fusion with cancer cells. In the 4T1 breast cancer metastatic lung cancer mouse models, the remarkably higher lung targeting of intravenously injected LP@BG@CCM was observed with the almost normalized lung appearance, the reduced lung weight, the clear lung tissue structure, and the enhanced cancer cell apoptosis compared to its precursors. Moreover, several major immune factors were improved after administration of LP@BG@CCM, including the CD4+/CD8a+ T cells in the spleen and the TNF-α, IFN-γ, and IL-4 in the lung. LP@BG@CCM exhibits the optimal synergistic chemo-immunotherapy, which is a promising medication for the treatment of metastatic lung cancer.
2.Recombinant expression and in vitro activity identification of a bioactive peptide QUB2984 from skin secretion of Agalychnis callidryas
Ziyan TANG ; Shunqiang GU ; Xiaoling CHEN ; Lei WANG ; Chengbang MA ; Mei ZHOU ; Tianbao CHEN ; Lina DU ; Yiguang JIN
Chinese Journal of Tissue Engineering Research 2024;28(17):2675-2681
BACKGROUND:Frog active peptides have rich activities,such as antibacterial and anti-tumor,and are expected to solve the problem of antibiotic resistance. OBJECTIVE:The active peptide QUB2984 was discovered in the skin secretions of Agalychnis callidryas.Its structure and properties were simulated by bioinformatics.The peptide was synthesized,purified,and identified and its biological functions were investigated. METHODS:Agalychnis callidryas skin secretions were collected by electrostimulation.The sequence of QUB2984 was obtained through constructing a cDNA library with isolated mRNA.BLAST was used for peptide sequence alignment.Besides that,Iterative Threading ASSEmbly Refinement(I-TASSER)and HeliQuest tools were used for protein secondary structure simulation.It was synthesized by solid-phase peptide synthesis,purified by reverse-phase high-performance liquid chromatography,and structurally confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.The purified peptide was used to evaluate its biological activity.Its antibacterial effect was evaluated by the minimum inhibitory concentration method.Its cytotoxic effect was detected by MTT assay.Its safety was investigated by a hemolysis test. RESULTS AND CONCLUSION:(1)Peptide QUB2984 had basically α-spiral structure,with a relatively intact hydrophobic surface,and a certain destructive ability to biofilm.The third amino acid position of QUB2984 was composed of W and had a G-X-G structure.(2)The minimum inhibitory concentration of QUB2984 against gram-positive Staphylococcus aureus was 2 μmol/L,the minimum inhibitory concentration against gram-negative Escherichia coli was 2 μmol/L,and the minimum inhibitory concentration against the fungus Candida albicans was 8 μmol/L.(3)The active peptide QUB2984 had obvious inhibitory effect on human non-small cell lung cancer cells NCI-H838 at 10-5 mol/L concentration,and the hemolytic effect on horse red cells at 64 μmol/L concentration was 50%.(4)The results showed that QUB2984 had anti-bacterial and anti-cancer activity,and it had a positive charge of +3,which was conducive to contact with bacteria or cells.
3.Predatory bacterial hydrogels for topical treatment of infected wounds.
Yan LIU ; Bo ZHUANG ; Bochuan YUAN ; Hui ZHANG ; Jingfei LI ; Wanmei WANG ; Ruiteng LI ; Lina DU ; Pingtian DING ; Yiguang JIN
Acta Pharmaceutica Sinica B 2023;13(1):315-326
Wound infection is becoming a considerable healthcare crisis due to the abuse of antibiotics and the substantial production of multidrug-resistant bacteria. Seawater immersion wounds usually become a mortal trouble because of the infection of Vibrio vulnificus. Bdellovibrio bacteriovorus, one kind of natural predatory bacteria, is recognized as a promising biological therapy against intractable bacteria. Here, we prepared a B. bacteriovorus-loaded polyvinyl alcohol/alginate hydrogel for the topical treatment of the seawater immersion wounds infected by V. vulnificus. The B. bacteriovorus-loaded hydrogel (BG) owned highly microporous structures with the mean pore size of 90 μm, improving the rapid release of B. bacteriovorus from BG when contacting the aqueous surroundings. BG showed high biosafety with no L929 cell toxicity or hemolysis. More importantly, BG exhibited excellent in vitro anti-V. vulnificus effect. The highly effective infected wound treatment effect of BG was evaluated on mouse models, revealing significant reduction of local V. vulnificus, accelerated wound contraction, and alleviated inflammation. Besides the high bacterial inhibition of BG, BG remarkably reduced inflammatory response, promoted collagen deposition, neovascularization and re-epithelization, contributing to wound healing. BG is a promising topical biological formulation against infected wounds.
4.Inhaled curcumin mesoporous polydopamine nanoparticles against radiation pneumonitis.
Ting CHEN ; Bo ZHUANG ; Yueqi HUANG ; Yan LIU ; Bochuan YUAN ; Wanmei WANG ; Tianyu YUAN ; Lina DU ; Yiguang JIN
Acta Pharmaceutica Sinica B 2022;12(5):2522-2532
Radiation therapy is an effective method to kill cancer cells and shrink tumors using high-energy X-ray or γ-ray. Radiation pneumonitis (RP) is one of the most serious complications of radiation therapy for thoracic cancers, commonly leading to serious respiratory distress and poor prognosis. Here, we prepared curcumin-loaded mesoporous polydopamine nanoparticles (CMPN) for prevention and treatment of RP by pulmonary delivery. Mesoporous polydopamine nanoparticles (MPDA) were successfully synthesized with an emulsion-induced interface polymerization method and curcumin was loaded in MPDA via π‒π stacking and hydrogen bonding interaction. MPDA owned the uniform spherical morphology with numerous mesopores that disappeared after loading curcumin. More than 80% curcumin released from CMPN in 6 h and mesopores recovered. CMPN remarkably protected BEAS-2B cells from γ-ray radiation injury by inhibiting apoptosis. RP rat models were established after a single dose of 15 Gy 60Co γ-ray radiation was performed on the chest area. Effective therapy of RP was achieved by intratracheal administration of CMPN due to free radical scavenging and anti-oxidation ability, and reduced proinflammatory cytokines, high superoxide dismutase, decreased malondialdehyde, and alleviated lung tissue damages were observed. Inhaled CMPN paves a new avenue for the treatment of RP.
5.Smart drug delivery systems for precise cancer therapy.
Xiaoyou WANG ; Chong LI ; Yiguang WANG ; Huabing CHEN ; Xinxin ZHANG ; Cong LUO ; Wenhu ZHOU ; Lili LI ; Lesheng TENG ; Haijun YU ; Jiancheng WANG
Acta Pharmaceutica Sinica B 2022;12(11):4098-4121
Nano-drug delivery strategies have been highlighted in cancer treatment, and much effort has been made in the optimization of bioavailability, biocompatibility, pharmacokinetics profiles, and in vivo distributions of anticancer nano-drug delivery systems. However, problems still exist in the delicate balance between improved anticancer efficacy and reduced toxicity to normal tissues, and opportunities arise along with the development of smart stimuli-responsive delivery strategies. By on-demand responsiveness towards exogenous or endogenous stimulus, these smart delivery systems hold promise for advanced tumor-specificity as well as controllable release behavior in a spatial-temporal manner. Meanwhile, the blossom of nanotechnology, material sciences, and biomedical sciences has shed light on the diverse modern drug delivery systems with smart characteristics, versatile functions, and modification possibilities. This review summarizes the current progress in various strategies for smart drug delivery systems against malignancies and introduces the representative endogenous and exogenous stimuli-responsive smart delivery systems. It may provide references for researchers in the fields of drug delivery, biomaterials, and nanotechnology.
6.Intranasal temperature-sensitive hydrogels of cannabidiol inclusion complex for the treatment of post-traumatic stress disorder.
Lulu PANG ; Siqing ZHU ; Jinqiu MA ; Lin ZHU ; Yijing LIU ; Ge OU ; Ruiteng LI ; Yaxin WANG ; Yi LIANG ; Xu JIN ; Lina DU ; Yiguang JIN
Acta Pharmaceutica Sinica B 2021;11(7):2031-2047
Post-traumatic stress disorder (PTSD) is a psychiatric disease that seriously affects brain function. Currently, selective serotonin reuptake inhibitors (SSRIs) are used to treat PTSD clinically but have decreased efficiency and increased side effects. In this study, nasal cannabidiol inclusion complex temperature-sensitive hydrogels (CBD TSGs) were prepared and evaluated to treat PTSD. Mice model of PTSD was established with conditional fear box. CBD TSGs could significantly improve the spontaneous behavior, exploratory spirit and alleviate tension in open field box, relieve anxiety and tension in elevated plus maze, and reduce the freezing time. Hematoxylin and eosin and c-FOS immunohistochemistry slides showed that the main injured brain areas in PTSD were the prefrontal cortex, amygdala, and hippocampus CA1. CBD TSGs could reduce the level of tumor necrosis factor-
7.A magnetism/laser-auxiliary cascaded drug delivery to pulmonary carcinoma.
Jialiang LIN ; Qingqing YIN ; Binlong CHEN ; Haoran ZHANG ; Dong MEI ; Jijun FU ; Bing HE ; Hua ZHANG ; Wenbing DAI ; Xueqing WANG ; Yiguang WANG ; Qiang ZHANG
Acta Pharmaceutica Sinica B 2020;10(8):1549-1562
Although high-efficiency targeted delivery is investigated for years, the efficiency of tumor targeting seems still a hard core to smash. To overcome this problem, we design a three-step delivery strategy based on streptavidin-biotin interaction with the help of c(RGDfK), magnetic fields and lasers. The ultrasmall superparamagnetic iron oxide nanoparticles (USIONPs) modified with c(RGDfK) and biotin are delivered at step 1, followed by streptavidin and the doxorubicin (Dox) loaded nanosystems conjugated with biotin at steps 2 and 3, respectively. The delivery systems were proved to be efficient on A549 cells. The co-localization of signal for each step revealed the targeting mechanism. The external magnetic field could further amplify the endocytosis of USPIONs based on c(RGDfK), and magnify the uptake distinctions among different test groups. Based on photoacoustic imaging, laser-heating treatment could enhance the permeability of tumor venous blood vessels and change the insufficient blood flow in cancer. Then, it was noticed that only three-step delivery with laser-heating and magnetic fields realized the highest tumor distribution of nanosystem. Finally, the magnetism/laser-auxiliary cascaded delivery exhibited the best antitumor efficacy. Generally, this study demonstrated the necessity of combining physical, biological and chemical means of targeting.
8.Construction of a new isovalerylspiramycin I producing strain by CRISPR-Cas9 system.
Xiaoting ZHANG ; Yan ZHANG ; Jianlu DAI ; Yiguang WANG ; Weiqing HE
Chinese Journal of Biotechnology 2019;35(3):472-481
Isovalerylspiramycin (ISP)Ⅰ, as a major component of bitespiramycin (BT), exhibits similar antimicrobial activities with BT and has advantages in quality control and dosage forms. It has been under preclinical studies. The existing ISPⅠ producing strain, undergoing three genetic modifications, carries two resistant gene markers. Thus, it is hard for further genetic manipulation. It is a time-consuming and unsuccessful work to construct a new ISPⅠ strain without resistant gene marker by means of the classical homologous recombination in our preliminary experiments. Fortunately, construction of the markerless ISPⅠ strain, in which the bsm4 (responsible for acylation at 3 of spiramycin) gene was replaced by the Isovaleryltansferase gene (ist) under control of the constitutive promoter ermEp*, was efficiently achieved by using the CRISPR-Cas9 gene editing system. The mutant of bsm4 deletion can only produce SPⅠ. Isovaleryltransferase coded by ist catalyzes the isovalerylation of the SPⅠat C-4" hydroxyl group to produce ISPⅠ. As anticipated, ISPⅠ was the sole ISP component of the resultant strain (ΔEI) when detected by HPLC and mass spectrometry. The ΔEI mutant is suitable for further genetic engineering to obtain improved strains by reusing CRISPR-Cas9 system.
CRISPR-Cas Systems
;
Gene Editing
;
Genetic Engineering
;
Homologous Recombination
9.Recent progress in drug delivery.
Chong LI ; Jiancheng WANG ; Yiguang WANG ; Huile GAO ; Gang WEI ; Yongzhuo HUANG ; Haijun YU ; Yong GAN ; Yongjun WANG ; Lin MEI ; Huabing CHEN ; Haiyan HU ; Zhiping ZHANG ; Yiguang JIN
Acta Pharmaceutica Sinica B 2019;9(6):1145-1162
Drug delivery systems (DDS) are defined as methods by which drugs are delivered to desired tissues, organs, cells and subcellular organs for drug release and absorption through a variety of drug carriers. Its usual purpose to improve the pharmacological activities of therapeutic drugs and to overcome problems such as limited solubility, drug aggregation, low bioavailability, poor biodistribution, lack of selectivity, or to reduce the side effects of therapeutic drugs. During 2015-2018, significant progress in the research on drug delivery systems has been achieved along with advances in related fields, such as pharmaceutical sciences, material sciences and biomedical sciences. This review provides a concise overview of current progress in this research area through its focus on the delivery strategies, construction techniques and specific examples. It is a valuable reference for pharmaceutical scientists who want to learn more about the design of drug delivery systems.
10. Role of Th1/Th2/Th17 cytokines in maintaining virological response after entecavir discontinuation in patients with chronic hepatitis B
Yuanwang QIU ; Jianhe GAN ; Wenlong YANG ; Yaping DAI ; Jun WANG ; Bo ZHANG ; Zhen WANG ; Tingting SU ; Yiguang LI ; Hongyan ZHOU ; Wei XU ; Lihua HUANG
Chinese Journal of Experimental and Clinical Virology 2018;32(1):43-47
Objective:
To explore the characteristics underlying Th1/Th2/Th17 expression level after entecavir (ETV) discontinuation of chronic hepatitis B (CHB) patients who were HBeAg-positive and define the role of Th1/Th2/Th17 in maintaining virological response after ETV discontinuation.
Methods:
We selected 112 HBeAg positive CHB patients who met the withdrawal criteria according to the guideline of prevention and treatment of chronic hepatitis B (2010 version), and we also separated them into virology sustained response (SVR) group and virological relapse (VR) group according to the recurrence in 52 weeks. We detected serum level of Th1/Th2/h17 related cytokines during 0, 12, 24 and 52 weeks follow-up to further analyze their dynamic changes and expression differences.
Results:
The results of the study reveals that serum levels of IFN-γ in the group of SVR were at a higher level compared with VR group during follow-up (all

Result Analysis
Print
Save
E-mail