1.Herbal Textual Research on Dioscoreae Hypoglaucae Rhizoma, Dioscoreae Spongiosae Rhizoma, Smilacis Chinae Rhizoma and Smilacis Glabrae Rhizoma in Famous Classical Formulas
Li LU ; Yichen YANG ; Erhuan WANG ; Hui CHANG ; Li AN ; Shibao WANG ; Cunde MA ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):218-247
This article systematically reviews and verifies the medicinal materials of Dioscoreae Hypoglaucae Rhizoma(DHR), Dioscoreae Spongiosae Rhizoma(DSR), Smilacis Chinae Rhizoma(SCR) and Smilacis Glabrae Rhizoma(SGR) from the aspects of name, origin, producing area, quality, harvesting, processing and efficacy by consulting historical literature, in order to provide reference for the development and utilization of famous classical formulas containing the four medicinal materials. DHR, DSR, SCR and SGR have a long history of application as medicinal materials. However, due to their similar growth environment and medicinal properties, as well as their functions of promoting dampness, dispelling wind and removing numbness, there have been instances of homonymous foreign objects and homonymous synonyms throughout history, resulting in confusion of the origin. Therefore, it is necessary to conduct comparative analysis and systematic research for clarifying the historical development and changes of the four, in order to provide a basis for safe and effective medication. According to research, Bixie was first recorded in Shennong Bencaojing and has been historically known as Baizhi, Chijie, Zhumu, and other aliases. From ancient times to the mid-20th century, there has always been a situation where the rhizomes of Dioscorea plants and Smilax plants, and even the rhizomes of Heterosmilax plants, were mixed together to be used as medicinal herbs for Bixie. However, since the Tang dynasty, it has been clearly advocated that the rhizomes of Dioscorea plants have excellent quality and have been the mainstream throughout history. The 2020 edition of Chinese Pharmacopoeia categorized it into two types of medicinal herbs(DHR and DSR). Among them, the origin of DHR is the dry rhizomes of Dioscorea hypoglauca, and the origins of DSR are the dry rhizomes of D. spongiosa and D. futschauensis. In ancient times, due to different types, the corresponding production areas of DHR and DSR were also different. Nowadays, They are mainly produced in the southern region of the Yangtze River. Since the Tang dynasty, the quality of Bixie has been characterized by its white color and soft nature. In modern times, it has been summarized that those with white color, large and thin pieces, powdery texture, tough and elastic texture, and neat and unbreakable are the best. The harvesting times of DHR and DSR are in spring or autumn, with the best quality harvested in autumn. The mainstream processing methods of them are slicing and then using the raw products or wine-processed products. SCR was first recorded in Mingyi Bielu and has been known as Jinganggen, Tielingjiao, Tieshuazi, and other aliases in history. The mainstream source is the dry rhizomes of Smilax china in the past dynasties, with the best quality being those that are tough and rich in powder. The harvesting time is from the late autumn to the following spring, and the main processing method throughout history has been slicing for raw use. SGR was first recorded under the item of Yuyuliang in Variorum of Shennong's Classic of Materia Medica. It was listed as an independent medicinal material from Bencao Gangmu. In history, there were such aliases as Cao Yuyuliang, Lengfantuan, Xianyiliang, Tubixie, etc. The main source of the past dynasties was dry rhizomes of S. glabra. In history, there have also been instances of multiple plants belonging to the same genus, and even cases of mixing the rhizomes of plants in the genus Heterosmilax. It is mainly produced in Guangdong, Hunan, Hubei, Zhejiang, Sichuan, Anhui and other regions, its quality has been summarized as large in size, powdery in texture, with few veins, and light brown in cross-section since modern times. The harvesting time is in spring or autumn, and the main processing method throughout history has been slicing for raw use. DHR, DSR, SCR and SGR all have the effects of promoting dampness, dispelling wind, relieving rheumatism and detoxifying. However, their detoxification abilities are ranked as follows:SGR>SCR>Bixie(DHR and DSR). Especially for the treatment of limb spasms, arthralgia and myalgia, scrofula, and scabies caused by syphilis and mercury poisoning, SGR has a unique effect. Based on the research results, DHR is recommended to develop the famous classical formulas containing Bixie as the first choice for medicinal herbs. It should be harvested in autumn, sliced thinly while fresh, and processed according to the requirements of the famous classical formulas, without any requirements for raw use. Selecting the rhizomes of S. china, harvested in late autumn, and thinly sliced while fresh. If there are no special processing requirements in the formulas, use it raw. Selecting the rhizomes of S. glabra, it is harvested in autumn and thinly sliced while fresh. If there are no special processing requirements in the formulas, raw products can be used.
2.Effect of Bushen Huoxue Prescription in Regulating PINK1/Parkin Pathway in Rat Model of Premature Ovarian Failure
Kailing WANG ; Yichen JING ; Guiyun WANG ; Yueheng LI ; Huiping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):150-158
ObjectiveTo investigate the mechanism of action of Bushen Huoxue prescription (BSHXP) in regulating premature ovarian failure in rats through the PTEN-induced kinase 1 (PINK1)/Parkinson's protein (Parkin) signaling pathway-mediated mitophagy. MethodsA total of 48 rats were randomly divided into a blank group consisting of eight rats, while the remaining 40 rats underwent modeling. The modeling group was intraperitoneally injected with 4 mg·kg-1 cisplatin solution, followed by a second injection one week later, for a total of two injections. The estrous cycle was observed through vaginal smears for 14 consecutive days to determine whether the modeling was successful. The successfully modeled rats were randomly divided into a model group, groups receiving low, medium, and high doses of BSHXP at 9.72, 19.44, and 38.88 g·kg-1·d-1 (BSHXP-L, BSHXP-M, and BSHXP-H groups), and a positive control group treated with estradiol valerate (0.09 mg·kg-1·d-1), for 21 consecutive days. The body weight of the rats was measured weekly. After the final administration, rats were anesthetized, and their blood and ovaries were collected. The ovarian weight was measured. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of anti-Müllerian hormone (AMH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2). Assay kits were used to measure the levels of superoxide dismutase (SOD) and malondialdehyde (MDA) in the rat serum. Hematoxylin-eosin (HE) staining was used to observe the morphological changes in the ovaries. Immunohistochemistry (IHC) was performed to detect microtubule autophagy-related protein 1 light chain 3B(LC3B) protein expression in ovarian tissue, and electron microscopy was employed to examine the mitochondrial and autophagosome changes in the rat ovaries. Western blot was used to detect the protein expression of PINK1, Parkin, LC3B, and p62. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of PINK1, Parkin, LC3B, and p62 in ovarian tissue. ResultsCompared with the blank group, the model group showed significant reductions in body weight, weight gain, and ovarian weight (P<0.01), along with decreased serum AMH and E2 levels (P<0.01), while FSH and LH levels were increased (P<0.01). Serum MDA levels were significantly increased (P<0.01), and SOD levels were significantly reduced (P<0.01). The ovarian tissue structure was disordered, and the zona pellucida was wrinkled into an irregular acidophilic annular object, accompanied by an increased number of closed follicles. Electron microscopy showed mitochondrial swelling, unclear structure, and no obvious autophagosomes and autolysosome structures. The proteins and mRNA expression levels of PINK1, Parkin, LC3B, and p62 in the ovarian tissue were significantly reduced (P<0.01). Compared with the model group, all treatment groups showed varying degrees of increases in body weight and ovarian weight (P<0.05, P<0.01). Except for the BSHXP-L group, all treatment groups showed increased body weight gain (P<0.01). All treatment groups showed significantly increased serum AMH and decreased FSH levels (P<0.01). Except for the BSHXP group, all treatment groups showed varying degrees of increase and decrease in serum E2 and LH levels (P<0.05, P<0.01). All treatment groups showed reduced serum MDA levels (P<0.01), while the BSHXP-M, BSHXP-H, and the positive control groups demonstrated improved serum SOD levels (P<0.05, P<0.01). All treatment groups showed an increased number of follicles at all stages, visible mature follicles, and a decreased number of closed follicles. Electron microscopy showed relieved mitochondrial swelling, morphology close to normal, clear structure, and visible formation of autolysosomes in all treatment groups. Additionally, the protein and mRNA expression levels of PINK1, Parkin, LC3B, and p62 in ovarian tissue were significantly increased (P<0.05, P<0.01). ConclusionBSHXP may improve ovarian function in rats with premature ovarian failure by regulating the PINK1/Parkin signaling pathway, activating mitochondrial autophagy, and reducing oxidative damage.
3.Effect of Bushen Huoxue Prescription in Regulating PINK1/Parkin Pathway in Rat Model of Premature Ovarian Failure
Kailing WANG ; Yichen JING ; Guiyun WANG ; Yueheng LI ; Huiping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):150-158
ObjectiveTo investigate the mechanism of action of Bushen Huoxue prescription (BSHXP) in regulating premature ovarian failure in rats through the PTEN-induced kinase 1 (PINK1)/Parkinson's protein (Parkin) signaling pathway-mediated mitophagy. MethodsA total of 48 rats were randomly divided into a blank group consisting of eight rats, while the remaining 40 rats underwent modeling. The modeling group was intraperitoneally injected with 4 mg·kg-1 cisplatin solution, followed by a second injection one week later, for a total of two injections. The estrous cycle was observed through vaginal smears for 14 consecutive days to determine whether the modeling was successful. The successfully modeled rats were randomly divided into a model group, groups receiving low, medium, and high doses of BSHXP at 9.72, 19.44, and 38.88 g·kg-1·d-1 (BSHXP-L, BSHXP-M, and BSHXP-H groups), and a positive control group treated with estradiol valerate (0.09 mg·kg-1·d-1), for 21 consecutive days. The body weight of the rats was measured weekly. After the final administration, rats were anesthetized, and their blood and ovaries were collected. The ovarian weight was measured. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of anti-Müllerian hormone (AMH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2). Assay kits were used to measure the levels of superoxide dismutase (SOD) and malondialdehyde (MDA) in the rat serum. Hematoxylin-eosin (HE) staining was used to observe the morphological changes in the ovaries. Immunohistochemistry (IHC) was performed to detect microtubule autophagy-related protein 1 light chain 3B(LC3B) protein expression in ovarian tissue, and electron microscopy was employed to examine the mitochondrial and autophagosome changes in the rat ovaries. Western blot was used to detect the protein expression of PINK1, Parkin, LC3B, and p62. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of PINK1, Parkin, LC3B, and p62 in ovarian tissue. ResultsCompared with the blank group, the model group showed significant reductions in body weight, weight gain, and ovarian weight (P<0.01), along with decreased serum AMH and E2 levels (P<0.01), while FSH and LH levels were increased (P<0.01). Serum MDA levels were significantly increased (P<0.01), and SOD levels were significantly reduced (P<0.01). The ovarian tissue structure was disordered, and the zona pellucida was wrinkled into an irregular acidophilic annular object, accompanied by an increased number of closed follicles. Electron microscopy showed mitochondrial swelling, unclear structure, and no obvious autophagosomes and autolysosome structures. The proteins and mRNA expression levels of PINK1, Parkin, LC3B, and p62 in the ovarian tissue were significantly reduced (P<0.01). Compared with the model group, all treatment groups showed varying degrees of increases in body weight and ovarian weight (P<0.05, P<0.01). Except for the BSHXP-L group, all treatment groups showed increased body weight gain (P<0.01). All treatment groups showed significantly increased serum AMH and decreased FSH levels (P<0.01). Except for the BSHXP group, all treatment groups showed varying degrees of increase and decrease in serum E2 and LH levels (P<0.05, P<0.01). All treatment groups showed reduced serum MDA levels (P<0.01), while the BSHXP-M, BSHXP-H, and the positive control groups demonstrated improved serum SOD levels (P<0.05, P<0.01). All treatment groups showed an increased number of follicles at all stages, visible mature follicles, and a decreased number of closed follicles. Electron microscopy showed relieved mitochondrial swelling, morphology close to normal, clear structure, and visible formation of autolysosomes in all treatment groups. Additionally, the protein and mRNA expression levels of PINK1, Parkin, LC3B, and p62 in ovarian tissue were significantly increased (P<0.05, P<0.01). ConclusionBSHXP may improve ovarian function in rats with premature ovarian failure by regulating the PINK1/Parkin signaling pathway, activating mitochondrial autophagy, and reducing oxidative damage.
4.Construction of a Diagnostic Model for Traditional Chinese Medicine Syndromes of Chronic Cough Based on the Voting Ensemble Machine Learning Algorithm
Yichen BAI ; Suyang QIN ; Chongyun ZHOU ; Liqing SHI ; Kun JI ; Chuchu ZHANG ; Panfei LI ; Tangming CUI ; Haiyan LI
Journal of Traditional Chinese Medicine 2025;66(11):1119-1127
ObjectiveTo explore the construction of a machine learning model for the diagnosis of traditional Chinese medicine (TCM) syndromes in chronic cough and the optimization of this model using the Voting ensemble algorithm. MethodsA retrospective analysis was conducted using clinical data from 921 patients with chronic cough treated at the Respiratory Department of Dongfang Hospital, Beijing University of Chinese Medicine. After standardized processing, 84 clinical features were extracted to determine TCM syndrome types. A specialized dataset for TCM syndrome diagnosis in chronic cough was formed by selecting syndrome types with more than 50 cases. The synthetic minority over-sampling technique (SMOTE) was employed to balance the dataset. Four base models, logistic regression (LR), decision tree (dt), multilayer perceptron (MLP), and Bagging, were constructed and integrated using a hard voting strategy to form a Voting ensemble model. Model performance was evaluated using accuracy, recall, precision, F1-score, receiver operating characteristic (ROC) curve, area under the curve (AUC), and confusion matrix. ResultsAmong the 921 cases, six syndrome types had over 50 cases each, phlegm-heat obstructing the lung (294 cases), wind pathogen latent in the lung (103 cases), cold-phlegm obstructing the lung (102 cases), damp-heat stagnating in the lung (64 cases), lung yang deficiency (54 cases), and phlegm-damp obstructing the lung (53 cases), yielding a total of 670 cases in the specialized dataset. High-frequency symptoms among these patients included cough, expectoration, odor-induced cough, throat itchiness, itch-induced cough, and cough triggered by cold wind. Among the four base models, the MLP model showed the best diagnostic performance (test accuracy: 0.9104; AUC: 0.9828). Compared with the base models, the Voting ensemble model achieved superior performance with an accuracy of 0.9289 on the training set and 0.9253 on the test set, showing a minimal overfitting gap of 0.0036. It also achieved the highest AUC (0.9836) in the test set, outperforming all base models. The model exhi-bited especially strong diagnostic performance for damp-heat stagnating in the lung (AUC: 0.9984) and wind pathogen latent in the lung (AUC: 0.9970). ConclusionThe Voting ensemble algorithm effectively integrates the strengths of multiple machine learning models, resulting in an optimized diagnostic model for TCM syndromes in chronic cough with high accuracy and enhanced generalization ability.
5.Herbal Textual Research on Stemonae Radix in Famous Classical Formulas
Gang XU ; Li AN ; Xiaomei WANG ; Erhuan WANG ; Yichen YANG ; Cunde MA ; Yang YANG ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):241-251
This article systematically reviews and verifies the historical evolution of Stemonae Radix from the aspects of name, origin, harvesting and processing, quality and others by consulting ancient and modern literature, in order to provide reference for the development and utilization of famous classical formulas containing this medicinal herb. Stemonae Radix has a long history of application, and it derives its name from its distinctive growth pattern, featuring clusters of ten to several dozen underground tuberous roots. This morphology resembles that of certain plants in the genus Asparagus, leading to historical instances where tuberous roots from genus Asparagus were mistakenly used as Stemonae Radix. After the research, it can be concluded that Stemonae Radix was first recorded in Mingyi Bielu, and throughout history, Baidu has been recognized as its official name, though it also bears alternative names such as Baibing, Pofucao and Ye Tianmendong. The mainstream sources used throughout history have been the dried tuberous roots of Stemona sessilifolia, S. japonica or S. tuberosa from the family Stemonaceae. This aligns with the 2025 edition of Pharmacopoeia of the People's Republic of China(hereinafter referred to as Chinese Pharmacopoeia). Additionally, Asparagus filicinus and A. officinalis from the genus Asparagus are common sources of confusion with Stemonae Radix. The three primitive plants are mainly distributed in the Yangtze River basin and southern China, exhibiting a wide distribution. Historically, wild harvesting was predominant, but cultivation is now established. In ancient times, the harvesting time was mostly in the second, third, and eighth lunar months, when roots were harvested and dried. Nowadays, it is more common to pick and excavate in the spring and autumn seasons. After excavation, the roots are washed, fibrous roots removed, briefly blanched in boiling water or steamed until no white core remains, and then sun-dried or oven-dried. In ancient times, the processing of Stemonae Radix primarily involved roasting(stir-frying), wine roasting, or raw materials. Modern mainstream processing specifications include two types of raw and honey-roasted products. In terms of quality evaluation of the medicinal materials, ancient criteria of "preferring plump and moist roots" align with modern requirement favoring "thick, robust stems with firm texture". Evaluating quality with authenticity, since the Song dynasty, it has been highly praised to produce in Chuzhou and Hengyang as the best. It was an ancient method of fixing the production area to stabilize the medicinal origin, reflecting the ancient recognition of the therapeutic efficacy of plants belonging to the genus Stemona. The main functions of Stemonae Radix remain consistent throughout history, including relieving coughs, eliminating phlegm and parasites. Based on the research results, it is recommended that when developing famous classical formulas containing the medicinal material Stemonae Radix, the botanical source specified in the 2025 edition of Chinese Pharmacopoeia should be selected. The specific species can be determined according to the distribution of resources and the main production areas, and the origin and corresponding botanical source should be fixed. Processing methods should be chosen based on the prescription requirements. It is recommended to use raw products without specified requirements.
6.Herbal Textual Research on Stemonae Radix in Famous Classical Formulas
Gang XU ; Li AN ; Xiaomei WANG ; Erhuan WANG ; Yichen YANG ; Cunde MA ; Yang YANG ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):241-251
This article systematically reviews and verifies the historical evolution of Stemonae Radix from the aspects of name, origin, harvesting and processing, quality and others by consulting ancient and modern literature, in order to provide reference for the development and utilization of famous classical formulas containing this medicinal herb. Stemonae Radix has a long history of application, and it derives its name from its distinctive growth pattern, featuring clusters of ten to several dozen underground tuberous roots. This morphology resembles that of certain plants in the genus Asparagus, leading to historical instances where tuberous roots from genus Asparagus were mistakenly used as Stemonae Radix. After the research, it can be concluded that Stemonae Radix was first recorded in Mingyi Bielu, and throughout history, Baidu has been recognized as its official name, though it also bears alternative names such as Baibing, Pofucao and Ye Tianmendong. The mainstream sources used throughout history have been the dried tuberous roots of Stemona sessilifolia, S. japonica or S. tuberosa from the family Stemonaceae. This aligns with the 2025 edition of Pharmacopoeia of the People's Republic of China(hereinafter referred to as Chinese Pharmacopoeia). Additionally, Asparagus filicinus and A. officinalis from the genus Asparagus are common sources of confusion with Stemonae Radix. The three primitive plants are mainly distributed in the Yangtze River basin and southern China, exhibiting a wide distribution. Historically, wild harvesting was predominant, but cultivation is now established. In ancient times, the harvesting time was mostly in the second, third, and eighth lunar months, when roots were harvested and dried. Nowadays, it is more common to pick and excavate in the spring and autumn seasons. After excavation, the roots are washed, fibrous roots removed, briefly blanched in boiling water or steamed until no white core remains, and then sun-dried or oven-dried. In ancient times, the processing of Stemonae Radix primarily involved roasting(stir-frying), wine roasting, or raw materials. Modern mainstream processing specifications include two types of raw and honey-roasted products. In terms of quality evaluation of the medicinal materials, ancient criteria of "preferring plump and moist roots" align with modern requirement favoring "thick, robust stems with firm texture". Evaluating quality with authenticity, since the Song dynasty, it has been highly praised to produce in Chuzhou and Hengyang as the best. It was an ancient method of fixing the production area to stabilize the medicinal origin, reflecting the ancient recognition of the therapeutic efficacy of plants belonging to the genus Stemona. The main functions of Stemonae Radix remain consistent throughout history, including relieving coughs, eliminating phlegm and parasites. Based on the research results, it is recommended that when developing famous classical formulas containing the medicinal material Stemonae Radix, the botanical source specified in the 2025 edition of Chinese Pharmacopoeia should be selected. The specific species can be determined according to the distribution of resources and the main production areas, and the origin and corresponding botanical source should be fixed. Processing methods should be chosen based on the prescription requirements. It is recommended to use raw products without specified requirements.
7.Acute effects of air pollution on pulmonary function and exhaled nitric oxide in children in Shanghai
Jianhui GAO ; Yuhong WANG ; Yichen DING ; Lisha SHI ; Dong XU ; Limin LING ; Li PENG ; Lijun ZHANG
Shanghai Journal of Preventive Medicine 2024;36(3):241-248
ObjectiveTo investigate the acute effects of compound air pollution on children’s respiratory function. MethodsUsing panel group study design, 223 students in five classes of grade 4 from two primary schools (a, b) in Xuhui and Hongkou districts of Shanghai were randomly selected to measure pulmonary function and exhaled nitric oxide (FeNO). The first three tests were carried out from May to June in 2020, and the fourth test was carried out from September to December in 2021. At the same time, the daily and hourly mean values of PM2.5, PM10, SO2, NO2, O3 and CO was collected from the nearby air quality monitoring points of the two schools during the same period , as well as meteorological monitoring data (temperature, humidity, wind speed and atmospheric pressure). The linear mixed effect model was used to analyze the effects of air pollution on pulmonary function and respiratory inflammation in the summer. ResultsThe results of single pollutant model showed that PM2.5, PM10, SO2 and NO2 were positively correlated with FeNO, and the effect was reflected in lag0, lag1 and lag3 (P<0.05). PM2.5, PM10 and NO2 were negatively correlated with the changes of lung function FEF25%, FEF50%, FEF75%, FeF25%-75%, PEF, FVC, FEV1 and FEV1/FVC, and the effect was reflected in lag0 to lag3 days (P<0.05). The results of the dual pollutant model showed that the concentration changes of SO2 and NO2 were significantly correlated with the decrease of FEV1 when combined with O3 or PM2.5 (P<0.01), and the concentration changes of PM2.5 was significantly correlated with the increase of FeNO when O3, SO2 and NO2 were combined respectively (P<0.01). The effects of the dual pollutant model were greater than the effect of PM2.5 single pollutant model. ConclusionThe health effects of different air pollutants on children’s respiratory tract function indexes in summer are different. The combined effects of two pollutants on the lung function of children increased to different degrees. Although air pollution is light in summer, it still has an impact on children’s respiratory tract function index and inflammation index, and the combined effect of dual pollutants is more significant than that of single pollutant.
8.Preparation of anti-PD-L1 nanobodies fused with C3Fab and their effect on plasma half-life
Zhanxiong WANG ; Meng LEI ; Yichen DENG ; Chu LOU ; Tianning YANG ; Qianqian HU ; Jiangwei LI
International Journal of Biomedical Engineering 2024;47(1):53-59
Objective:To prepare the anti-programmed death-ligand 1 (PD-L1) nanoantibody P3C8-C3Fab by ligating with C3Fab and to investigate its role in plasma half-life.Methods:The C3Fab peptide derived from protein G was molecularly fused with the nanobody P3C8 by DNA recombination technology. The nanoantibody P3C8-C3Fab was inducibly expressed and purified in the E. coli BL21 strain, and the binding of it to PD-L1 protein, mouse IgG, and PD-L1-expressing tumor cells was detected by enzyme-linked immunosorbent assay (ELISA). The residual P3C8-C3Fab was detected in mouse serum at different times using double-antibody sandwich ELISA to assess the prolongation of the plasma half-life of PD-L1 nanobodies by C3Fab. Results:The nanoantibody P3C8-C3Fab was successfully constructed, and it could efficiently express itself in soluble form in BL21. The purified NbP3C8-C3Fab protein was obtained with a mass fraction of about 90% at a yield of 7.18 mg/L. The affinity of P3C8-C3Fab for PD-L1 protein and mouse IgG gradually increased with increasing mass concentration and showed a concentration correlation. The binding of P3C8-C3Fab to lung cancer A549 cells showed a concentration correlation. The concentration standard curve of P3C8-C3Fab in mouse serum showed a typical S-shape with a concentration correlation. The plasma half-life of P3C8 was only 0.44 h, while the plasma half-life of P3C8-C3Fab was 21.27-fold higher, up to 9.36 h.Conclusions:The linkage of C3Fab to the nanobodies of P3C8 can significantly prolong the plasma half-life of P3C8, which is valuable for the improvement of in vivo nanobody effects.
9.Clinical significance of HOXB4 gene expression levels in myelodysplastic syndromes
Yichen WANG ; Yanwen YAN ; Meihui SONG ; Xiangjun XUE ; Wenguang ZHOU ; Yuquan LI ; Ling QI ; Guanghua LI ; Xiangzong ZENG
The Journal of Practical Medicine 2024;40(3):321-325
Objective To investigate the expression of HOXB4 gene in patients with myelodysplastic syn-dromes(MDS)and its clinical significance in disease progression.Methods mRNA expression of HOXB4 gene in bone marrow mononuclear cells was detected by real-time fluorescence quantitative PCR(RT-qPCR),and the difference in HOXB4 expression was compared between 49 patients with MDS(MDS group)and 35 patients without MDS(group C).The relationship of mRNA expression of HOXB4 with disease characteristics and clinical prognosis was explored in MDS patients.Results mRNA expression level of HOXB4 gene was higher in MDS group than that in group C(P<0.05).The patients were divided into a high-and a low-expression group according to the median expression level of HOXB4.Leukocyte count was lower in the high-expression group in the low-expression group at the time of initial diagnosis.The proportion of patients with subtypes of primitive cellular hyperplasia,poor prognostic staging and leukemic transformation was higher in the high-expression group than in the low-expression group.Conclusions mRNA expression level of HOXB4 gene has certain relation with AML transformation in MDS patients.
10.Clinical and laboratory characteristics of 202 patients with cryoglobulinemia
Yichen MA ; Pengchang LI ; Jianhua HAN ; Wei JI ; Qian DI ; Wei SU
Chinese Journal of Laboratory Medicine 2024;47(1):78-85
Objective:To analyze the clinical and laboratory characteristics of patients with cryoglobulinemia.Methods:It is a cross-sectional study. The patients diagnosed with cryoglobulinemia in our hospital were enrolled from July 2017 to March 2023. The baseline information of patients, included age, gender, qualitative, and quantitative results of serum cryoglobulins, initial clinical manifestations, etiology, serum complement 3 and 4, and the renal pathological manifestations. The clinical and laboratory characteristics of patients with different types of cryoglobulinemia were analyzed.Results:There were 62 patients (30.7%) with type Ⅰ cryoglobulinemia, 58 patients (28.7%) with type Ⅱ cryoglobulinemia, and 82 patients (40.6%) with type Ⅲ cryoglobulinemia enrolled in this study. Among these patients, 56 of primary cryoglobulinemia, 76 of autoimmune diseases, 29 of tumor-related diseases, and 52 of infectious diseases were observed. Clinical symptoms related to skin lesions (124 cases, 61.4%) and kidney damage (87 cases, 43.1%) were the most common initial clinical manifestations and arthralgia/arthritis (50 cases, 24.8%), peripheral neuropathy (33 cases, 16.3%), fatigue (28 cases, 13.9%), fever (23 cases, 11.4%) were also observed in some patients. The clinical symptoms varied in different types of cryoglobulinemia. 29.0% patients (18/62) with type Ⅰ had fatigue, which was higher than those with type Ⅱ (10.3%, 6/58) and type Ⅲ (4.9%, 4/82) ( P<0.05); Kidney damage occurred in 56.9% (33/58) patients with type Ⅱ and 52.4% (43/82) patients with type Ⅲ, which was higher than that in type Ⅰ patients (17.7%, 11/62) ( P<0.05); Only 4 patients (4.9%, 4/82) with type Ⅲ had peripheral neuropathy, which was lower than those with type Ⅰ (17.7%, 11/62) and type Ⅱ (31.0%, 18/58) ( P<0.05). The quantity of cryoglobulins in patients with type Ⅲ cryoglobulinemia [122 (82, 177) mg/L] was significantly lower than that in patients with type Ⅰ [695(229, 3 499) mg/L] ( P<0.001) and type Ⅱ cryoglobulinemia [350 (107, 1 874) mg/L] ( P<0.001). Complement 4 decreased in 49.0% (99/202) of patients and complement 3 decreased in 42.6% (86/202) of patients. Membranoproliferative glomerulonephritis (36.0%, 9/25) and endocapillary proliferative glomerulonephritis (32.0%, 8/25) were the main renal pathological manifestations of cryoglobulin nephropathy. Conclusions:The most common clinical manifestations of cryoglobulinemia are skin and kidney damage. The clinical manifestations of patients with cryoglobulinemia vary in different types of cryoglobulins. Serum complement decreases in nearly half of cryoglobulinemia patients.

Result Analysis
Print
Save
E-mail