1.Screening of biomarkers for fibromyalgia syndrome and analysis of immune infiltration
Yani LIU ; Jinghuan YANG ; Huihui LU ; Yufang YI ; Zhixiang LI ; Yangfu OU ; Jingli WU ; Bing WEI
Chinese Journal of Tissue Engineering Research 2025;29(5):1091-1100
BACKGROUND:Fibromyalgia syndrome,as a common rheumatic disease,is related to central sensitization and immune abnormalities.However,the specific mechanism has not been elucidated,and there is a lack of specific diagnostic markers.Exploring the possible pathogenesis of this disease has important clinical significance. OBJECTIVE:To screen the potential diagnostic marker genes of fibromyalgia syndrome and analyze the possible immune infiltration characteristics based on bioinformatics methods,such as weighted gene co-expression network analysis(WGCNA),and machine learning. METHODS:Gene expression profiles in peripheral serum of fibromyalgia syndrome patients and healthy controls were obtained from the gene expression omnibus(GEO)database.The differentially co-expressed genes were screened in the expression profile by differential analysis and WGCNA analysis.Least absolute shrinkage and selection operator(LASSO)and support vector machine-recursive feature elimination(SVM-RFE)machine learning algorithm were further used to identify hub biomarkers,and draw receiver operating characteristic curve(ROC)to evaluate the accuracy of diagnosing fibromyalgia syndrome.Finally,single sample gene set enrichment analysis(ssGSEA)and gene set enrichment analysis(GSEA)were used to evaluate the immune cell infiltration and pathway enrichment in patients with fibromyalgia syndrome. RESULTS AND CONCLUSION:Eight down-regulated differentially expressed genes(DEGs)were obtained after differential analysis of the GSE67311 dataset according to the conditions of log2|(FC)|>0 and P<0.05.After WGCNA analysis,497 genes were included in the module(MEdarkviolet)with the highest positive correlation(r=0.22,P=0.04),and 19 genes were included in the module(MEsalmon2)with the highest negative correlation(r=-0.41,P=6×10-5).After intersecting DEGs and the module genes of WGCNA,seven genes were obtained.Four genes were screened out by LASSO regression algorithm and five genes were screened out by SVM-RFE machine learning algorithm.After the intersection of the two,three core genes were identified,which were germinal center associated signaling and motility like,integrin beta-8,and carboxypeptidase A3.The areas under the ROC curve of the three core genes were 0.744,0.739,and 0.734,respectively,indicating that they have good diagnostic value and can be used as biomarkers for fibromyalgia syndrome.The results of immune infiltration analysis showed that memory B cells,CD56 bright NK cells,and mast cells were significantly down-regulated in patients with fibromyalgia syndrome compared with the control group(P<0.05),and were significantly positively correlated with the above three biomarkers(P<0.05).The enrichment analysis suggested that there were nine fibromyalgia syndrome enrichment pathways,mainly related to olfactory transduction pathway,neuroactive ligand-receptor interaction,and infection pathway.The above results showed that the occurrence and development of fibromyalgia syndrome are related to the involvement of multiple genes,abnormal immune regulation,and multiple pathways imbalance.However,the interactions between these genes and immune cells,as well as their relationships with various pathways need to be further investigated.
2.Therapeutic effect of anti-PD-L1&CXCR4 bispecific nanobody combined with gemcitabine in synergy with PBMC on pancreatic cancer treatment
Hai HU ; Shu-yi XU ; Yue-jiang ZHENG ; Jian-wei ZHU ; Ming-yuan WU
Acta Pharmaceutica Sinica 2025;60(2):388-396
Pancreatic cancer is a kind of highly malignant tumor with a low survival rate and poor prognosis. The effectiveness of gemcitabine as a first-line chemotherapy drug is limited; however, it can activate dendritic cells and improve antigen presentation which increase the sensitivity of tumor cell to immunotherapy. Although immunotherapy has made some advancements in cancer treatment, the therapeutic benefit of programmed cell death receptor 1/programmed death receptor-ligand 1 (PD-1/PD-L1) blockade therapy remains relatively low. The chemokine C-X-C chemokine ligand 12 (CXCL12) contributes to an immunosuppressive tumor microenvironment by recruiting immunosuppressive cells. The receptor C-X-C motif chemokine receptor 4 (CXCR4), highly expressed in various tumors including pancreatic cancer, plays a crucial role in tumor development and progression. In this study, the anti-tumor immune response of human peripheral blood mononuclear cell (hPBMC) was enhanced using the combination of BsNb PX4 (anti-PD-L1&CXCR4 bispecific nanobody) and gemcitabine. In a co-culture system of gemcitabine-pretreated hPBMCs with tumor cells, the BsNb PX4 synergized gemcitabine to improve the cytotoxic activity of hPBMCs against tumor cells. Flow cytometry analysis confirmed increased ratio of CD8+ to CD4+ T cells in combination treatment. In NOD/SCID mice bearing pancreatic cancer, the combination treatment exhibited more infiltration of CD8+ T cells into tumor tissues, contributing to an effective anti-tumor response. This study presents potential new therapies for the treatment of pancreatic cancer. Ethical approval was obtained for collection of hPBMC samples from the Local Ethics Committee of Shanghai Jiao Tong University. All animal experiments were approved by the Animal Ethic Committee of Shanghai Jiao Tong University (authorizing number: A2024246).
3.Outcomes of identifying enlarged vestibular aqueduct (Mondini malformation) related gene mutation in Mongolian people
Jargalkhuu E ; Tserendulam B ; Maralgoo J ; Zaya M ; Enkhtuya B ; Ulzii B ; Ynjinlhkam E ; Chuluun-Erdene Ts ; Chen-Chi Wu ; Cheng-Yu Tsai ; Yin-Hung Lin ; Yi-Hsin Lin ; Yen-Hui Chan ; Chuan-Jen Hsu ; Wei-Chung Hsu ; Pei-Lung Chen
Mongolian Journal of Health Sciences 2025;87(3):8-15
Background:
Hearing loss (HL) is one of the most common sensory disorders,
affecting over 5-8% of the world's population. Approximately half of HL cases are
attributed to genetic factors. In hereditary deafness, about 75-80% is inherited
through autosomal recessive inheritance, and common pathogenic genes include
GJB2 and SLC26A4. Pathogenic variants in the SLC26A4gene are the leading
cause of hereditary hearing loss in humans, second only to the GJB2 gene. Variants in the SLC26A4gene cause hearing loss, which can be non-syndromic autosomal recessive deafness (DFNB4, OMIM #600791) associated with enlarged
vestibular aqueduct (EVA) or Pendred syndrome (Pendred, OMIM #605646).
DFNB4 is characterized by sensorineural hearing loss combined with EVA or less
common cochlear malformation defect. Pendred syndrome is characterized by bilateral sensorineural hearing loss with EVA and an iodine defect that can lead to
thyroid goiter. Currently, it is known that EVA is associated with variants in the
SLC26A4 gene and is a penetrant feature of SLC26A4-related HL. Predominant
mutations in these genes differ significantly across populations. For instance, predominant SLC26A4 mutations differ among populations, including p.T416P and
c.1001G>A in Caucasians, p.H723R in Japanese and Koreans, and c.919-2A>G
in Han Taiwanese and Han Chinese. On the other hand, there has been no study
of hearing loss related to SLC26A4 gene variants among Mongolians, which is the
basis of our research.
Aim:
We aimed to identify the characteristics of the SLC26A4 gene variants in
Mongolian people with Enlarged vestibular aqueduct and Mondini malformation.
Materials and Methods:
In 2022-2024, We included 13 people with hearing loss
and enlarged vestibular aqueduct, incomplete cochlea (1.5 turns of the cochlea
with cystic apex- incomplete partition type II- Mondini malformation) were examined by CT scan of the temporal bone in our study. WES (Whole exome sequencing) analysis was performed in the Genetics genetic-laboratory of the National
Taiwan University Hospital.
Results:
Genetic analysis revealed 26 confirmed pathogenic variants of bi-allelic
SLC26A4 gene of 8 different types in 13 cases, and c.919-2A>G variant was dominant with 46% (12/26) in allele frequency, and c.2027T>A (p.L676Q) variant 19%
(5/26), c.1318A>T(p.K440X) variant 11% (3/26), c.1229C>T (p.T410M) variant 8%
(2/26) ) , c.716T>A (p.V239D), c.281C>T (p.T94I), c.1546dupC, and c.1975G>C
(p.V659L) variants were each 4% (1/26)- revealed. Two male children, 11 years
old (SLC26A4: c.919-2A>G) and 7 years old (SLC26A4: c.919-2A>G:, SLC26A4:
c.2027T>A (p.L676Q))had history of born normal hearing and progressive hearing
loss.
Conclusions
1. 26 variants of bi-allelic SLC26A4 gene mutation were detected
in Mongolian people with EVA and Mondini malformation, and c.919-2A>G was
the most dominant allele variant, and rare variants such as c.1546dupC, c.716T>A
(p.V239D) were detected.
2. Our study shows that whole-exome sequencing (WES) can identify gene
mutations that are not detected by polymerase chain reaction (PCR) or NGS analysis.
4.Frontal and Parietal Alpha Asymmetry as Biomarkers for Negative Symptoms in Schizophrenia
Yao-Cheng WU ; Chih-Chung HUANG ; Yi-Guang WANG ; Chu-Ya YANG ; Wei-Chou CHANG ; Chuan-Chia CHANG ; Hsin-An CHANG
Psychiatry Investigation 2025;22(4):435-441
Objective:
Negative symptoms in schizophrenia indicate a poor prognosis. However, the mechanisms underlying the development of negative symptoms remain unclear. This study investigated the relationship between negative symptoms in schizophrenia and frontal alpha asymmetry (FAA).
Methods:
The study used a 32-channel electroencephalography to acquire alpha power in 4 target-paired sites in each patient. Regional alpha asymmetry was calculated based on the alpha power using EEGLAB Frontal Alpha Asymmetry Toolbox.
Results:
Sixty schizophrenia patients with predominant negative symptoms (PNS), 72 stabilized schizophrenia (SS) patients, and 73 healthy control (HC) participants were enrolled in this study. No significant differences were observed in FAA between the PNS and SS groups, although both groups exhibited reduced P3-P4 alpha asymmetry compared to HCs. A positive correlation was found between F7-F8 alpha asymmetry and illness duration. Additionally, a predictive model based on P3-P4 alpha asymmetry scores was able to differentiate schizophrenia patients from HCs, achieving a sensitivity of 71.2% and a specificity of 72.6%.
Conclusion
This study highlighted that parietal alpha asymmetry could serve as a valuable diagnostic tool for schizophrenia.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.Association between nonalcoholic fatty liver disease and incidence of inflammatory bowel disease: a nationwide population‑based cohort study
Ying-Hsiang WANG ; Chi-Hsiang CHUNG ; Tien-Yu HUANG ; Chao-Feng CHANG ; Chi-Wei YANG ; Wu-Chien CHIEN ; Yi-Chiao CHENG
Intestinal Research 2025;23(1):76-84
Background/Aims:
Nonalcoholic fatty liver disease (NAFLD) is a common disease with severe inflammatory processes associated with numerous gastrointestinal diseases, such as inflammatory bowel disease (IBD). Therefore, we investigated the relationship between NAFLD and IBD and the possible risk factors associated with the diagnosis of IBD.
Methods:
This longitudinal nationwide cohort study investigated the risk of IBD in patients with NAFLD alone. General characteristics, comorbidities, and incidence of IBD were also compared.
Results:
Patients diagnosed with NAFLD had a significant risk of developing IBD compared to control individuals, who were associated with a 2.245-fold risk of the diagnosis of IBD and a 2.260- and 2.231-fold of increased diagnosis of ulcerative colitis and Crohn’s disease, respectively (P< 0.001). The cumulative risk of IBD increased annually during the follow-up of patients with NAFLD (P< 0.001).
Conclusions
Our results emphasize that NAFLD significantly impacts its incidence in patients with NAFLD. If patients with NAFLD present with risk factors, such as diabetes mellitus and dyslipidemia, these conditions should be properly treated with regular follow-ups. Furthermore, we believe that these causes may be associated with the second peak of IBD.
7.Antiviral therapy for chronic hepatitis B with mildly elevated aminotransferase: A rollover study from the TORCH-B trial
Yao-Chun HSU ; Chi-Yi CHEN ; Cheng-Hao TSENG ; Chieh-Chang CHEN ; Teng-Yu LEE ; Ming-Jong BAIR ; Jyh-Jou CHEN ; Yen-Tsung HUANG ; I-Wei CHANG ; Chi-Yang CHANG ; Chun-Ying WU ; Ming-Shiang WU ; Lein-Ray MO ; Jaw-Town LIN
Clinical and Molecular Hepatology 2025;31(1):213-226
Background/Aims:
Treatment indications for patients with chronic hepatitis B (CHB) remain contentious, particularly for patients with mild alanine aminotransferase (ALT) elevation. We aimed to evaluate treatment effects in this patient population.
Methods:
This rollover study extended a placebo-controlled trial that enrolled non-cirrhotic patients with CHB and ALT levels below two times the upper limit of normal. Following 3 years of randomized intervention with either tenofovir disoproxil fumarate (TDF) or placebo, participants were rolled over to open-label TDF for 3 years. Liver biopsies were performed before and after the treatment to evaluate histopathological changes. Virological, biochemical, and serological outcomes were also assessed (NCT02463019).
Results:
Of 146 enrolled patients (median age 47 years, 80.8% male), 123 completed the study with paired biopsies. Overall, the Ishak fibrosis score decreased in 74 (60.2%), remained unchanged in 32 (26.0%), and increased in 17 (13.8%) patients (p<0.0001). The Knodell necroinflammation score decreased in 58 (47.2%), remained unchanged in 29 (23.6%), and increased in 36 (29.3%) patients (p=0.0038). The proportion of patients with an Ishak score ≥ 3 significantly decreased from 26.8% (n=33) to 9.8% (n=12) (p=0.0002). Histological improvements were more pronounced in patients switching from placebo. Virological and biochemical outcomes also improved in placebo switchers and remained stable in patients who continued TDF. However, serum HBsAg levels did not change and no patient cleared HBsAg.
Conclusions
In CHB patients with minimally raised ALT, favorable histopathological, biochemical, and virological outcomes were observed following 3-year TDF treatment, for both treatment-naïve patients and those already on therapy.
8.Frontal and Parietal Alpha Asymmetry as Biomarkers for Negative Symptoms in Schizophrenia
Yao-Cheng WU ; Chih-Chung HUANG ; Yi-Guang WANG ; Chu-Ya YANG ; Wei-Chou CHANG ; Chuan-Chia CHANG ; Hsin-An CHANG
Psychiatry Investigation 2025;22(4):435-441
Objective:
Negative symptoms in schizophrenia indicate a poor prognosis. However, the mechanisms underlying the development of negative symptoms remain unclear. This study investigated the relationship between negative symptoms in schizophrenia and frontal alpha asymmetry (FAA).
Methods:
The study used a 32-channel electroencephalography to acquire alpha power in 4 target-paired sites in each patient. Regional alpha asymmetry was calculated based on the alpha power using EEGLAB Frontal Alpha Asymmetry Toolbox.
Results:
Sixty schizophrenia patients with predominant negative symptoms (PNS), 72 stabilized schizophrenia (SS) patients, and 73 healthy control (HC) participants were enrolled in this study. No significant differences were observed in FAA between the PNS and SS groups, although both groups exhibited reduced P3-P4 alpha asymmetry compared to HCs. A positive correlation was found between F7-F8 alpha asymmetry and illness duration. Additionally, a predictive model based on P3-P4 alpha asymmetry scores was able to differentiate schizophrenia patients from HCs, achieving a sensitivity of 71.2% and a specificity of 72.6%.
Conclusion
This study highlighted that parietal alpha asymmetry could serve as a valuable diagnostic tool for schizophrenia.
9.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
10.Frontal and Parietal Alpha Asymmetry as Biomarkers for Negative Symptoms in Schizophrenia
Yao-Cheng WU ; Chih-Chung HUANG ; Yi-Guang WANG ; Chu-Ya YANG ; Wei-Chou CHANG ; Chuan-Chia CHANG ; Hsin-An CHANG
Psychiatry Investigation 2025;22(4):435-441
Objective:
Negative symptoms in schizophrenia indicate a poor prognosis. However, the mechanisms underlying the development of negative symptoms remain unclear. This study investigated the relationship between negative symptoms in schizophrenia and frontal alpha asymmetry (FAA).
Methods:
The study used a 32-channel electroencephalography to acquire alpha power in 4 target-paired sites in each patient. Regional alpha asymmetry was calculated based on the alpha power using EEGLAB Frontal Alpha Asymmetry Toolbox.
Results:
Sixty schizophrenia patients with predominant negative symptoms (PNS), 72 stabilized schizophrenia (SS) patients, and 73 healthy control (HC) participants were enrolled in this study. No significant differences were observed in FAA between the PNS and SS groups, although both groups exhibited reduced P3-P4 alpha asymmetry compared to HCs. A positive correlation was found between F7-F8 alpha asymmetry and illness duration. Additionally, a predictive model based on P3-P4 alpha asymmetry scores was able to differentiate schizophrenia patients from HCs, achieving a sensitivity of 71.2% and a specificity of 72.6%.
Conclusion
This study highlighted that parietal alpha asymmetry could serve as a valuable diagnostic tool for schizophrenia.

Result Analysis
Print
Save
E-mail