1.Exercise-induced Mitohormesis in Counteracting Age-related Sarcopenia
Zi-Yi ZHANG ; Mei MA ; Hai BO ; Tao LIU ; Yong ZHANG
Progress in Biochemistry and Biophysics 2025;52(6):1349-1361
		                        		
		                        			
		                        			Sarcopenia, an age-related degenerative skeletal muscle disorder characterized by progressive loss of muscle mass, diminished strength, and impaired physical function, poses substantial challenges to global healthy aging initiatives. The pathogenesis of this condition is fundamentally rooted in mitochondrial dysfunction, manifested through defective energy metabolism, disrupted redox equilibrium, imbalanced dynamics, and compromised organelle quality control. This comprehensive review elucidates the central role of exercise-induced mitochondrial hormesis as a critical adaptive mechanism counteracting sarcopenia. Mitohormesis represents an evolutionarily conserved stress response wherein sublethal mitochondrial perturbations, particularly transient low-dose reactive oxygen species (ROS) generated during muscle contraction, activate cytoprotective signaling cascades rather than inflicting macromolecular damage. The mechanistic foundation of this process involves ROS functioning as essential signaling molecules that activate the Keap1 nuclear factor erythroid 2 related factor 2 (Nrf2) antioxidant response element pathway. This activation drives transcriptional upregulation of phase II detoxifying enzymes including superoxide dismutase (SOD) and glutathione peroxidase (GPx), thereby enhancing cellular redox buffering capacity. Crucially, Nrf2 engages in bidirectional molecular crosstalk with peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC-1α), the principal regulator orchestrating mitochondrial biogenesis through coordinated induction of nuclear respiratory factors 1 and 2 (NRF1/2) along with mitochondrial transcription factor A (Tfam), collectively facilitating mitochondrial DNA replication and respiratory complex assembly. Concurrently, exercise-induced alterations in cellular energy status, specifically diminished ATP to AMP ratios, potently activate AMP activated protein kinase (AMPK). This energy-sensing kinase phosphorylates PGC-1α while concomitantly stimulating NAD dependent deacetylase sirtuin 1 (SIRT1) activity, which further potentiates PGC-1α function through post-translational deacetylation. The integrated AMPK/PGC-1α/SIRT1 axis coordinates mitochondrial biogenesis, optimizes network architecture through regulation of fusion proteins mitofusin 1 (Mfn1), mitofusin 2 (Mfn2) and optic atrophy protein 1 (OPA1), and enhances clearance of damaged organelles via selective activation of mitophagy receptors BCL2 interacting protein 3 (Bnip1) and FUN14 domain containing 1 (FNDC1). Exercise further stimulates the mitochondrial unfolded protein response (UPRmt), increasing molecular chaperones such as heat shock protein 60 (HSP60) and HSP10 to preserve proteostasis. Within the mitochondrial matrix, SIRT3 fine-tunes metabolic flux through deacetylation of electron transport chain components, improving phosphorylation efficiency while attenuating pathological ROS emission. Distinct exercise modalities differentially engage these pathways. Aerobic endurance training primarily activates AMPK/PGC-1α signaling and UPRmt to expand mitochondrial volume and oxidative capacity. Resistance training exploits mechanical tension to acutely stimulate mechanistic target of rapamycin complex 1 (mTORC1) mediated protein synthesis while modulating dynamin related protein 1 (Drp1) phosphorylation dynamics to support mitochondrial network reorganization. High intensity interval training generates potent metabolic oscillations that rapidly amplify AMPK/PGC-1α and Nrf2 activation, demonstrating particular efficacy in insulin-resistant phenotypes. Strategically designed concurrent training regimens synergistically integrate these adaptations. Mitochondrial-nuclear communication through tricarboxylic acid cycle metabolites and mitochondrially derived peptides such as mitochondrial open reading frame of 12s rRNA-c (MOTS-c) coordinates systemic metabolic reprogramming, with exercise-responsive myokines including fibroblast growth factor 21 (FGF-21) mediating inter-tissue signaling to reduce inflammation and enhance insulin sensitivity. This integrated framework provides the scientific foundation for precision exercise interventions targeting mitochondrial pathophysiology in sarcopenia, incorporating biomarker monitoring and exploring pharmacological potentiators including nicotinamide riboside and MOTS-c mimetics. Future investigations should delineate temporal dynamics of mitohormesis signaling and epigenetic regulation to optimize therapeutic approaches for age-related muscle decline. 
		                        		
		                        		
		                        		
		                        	
2.The Mechanism of Exercise Regulating Intestinal Flora in The Prevention and Treatment of Depression
Lei-Zi MIN ; Jing-Tong WANG ; Qing-Yuan WANG ; Yi-Cong CUI ; Rui WANG ; Xin-Dong MA
Progress in Biochemistry and Biophysics 2025;52(6):1418-1434
		                        		
		                        			
		                        			Depression, a prevalent mental disorder with significant socioeconomic burdens, underscores the urgent need for safe and effective non-pharmacological interventions. Recent advances in microbiome research have revealed the pivotal role of gut microbiota dysbiosis in the pathogenesis of depression. Concurrently, exercise, as a cost-effective and accessible intervention, has demonstrated remarkable efficacy in alleviating depressive symptoms. This comprehensive review synthesizes current evidence on the interplay among exercise, gut microbiota modulation, and depression, elucidating the mechanistic pathways through which exercise ameliorates depressive symptoms via the microbiota-gut-brain (MGB) axis. Depression is characterized by gut microbiota alterations, including reduced alpha and beta diversity, depletion of beneficial taxa (e.g., Bifidobacterium, Lactobacillus, and Coprococcus), and overgrowth of pro-inflammatory and pathogenic bacteria (e.g., Morganella, Klebsiella, and Enterobacteriaceae). Metagenomic analyses reveal disrupted metabolic functions in depressive patients, such as diminished synthesis of short-chain fatty acids (SCFAs), impaired tryptophan metabolism, and dysregulated bile acid conversion. For instance, Bifidobacterium longum deficiency correlates with reduced synthesis of neuroactive metabolites like homovanillic acid, while decreased Coprococcus abundance limits butyrate production, exacerbating neuroinflammation. Furthermore, elevated levels of indole derivatives from Clostridium species inhibit serotonin (5-HT) synthesis, contributing to depressive phenotypes. These dysbiotic profiles disrupt the MGB axis, triggering systemic inflammation, neurotransmitter imbalances, and hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. Exercise exerts profound effects on gut microbiota composition, diversity, and metabolic activity. Longitudinal studies demonstrate that sustained aerobic exercise increases alpha diversity, enriches SCFA-producing genera (e.g., Faecalibacterium prausnitzii, Roseburia, and Akkermansia), and suppresses pathobionts (e.g., Desulfovibrio and Streptococcus). For example, a meta-analysis of 25 trials involving 1 044 participants confirmed that exercise enhances microbial richness and restores the Firmicutes/Bacteroidetes ratio, a biomarker of metabolic health. Notably, endurance training promotes Veillonella proliferation, which converts lactate into propionate, enhancing energy metabolism and delaying fatigue. Exercise also strengthens intestinal barrier integrity by upregulating tight junction proteins (e.g., ZO-1, occludin), thereby reducing lipopolysaccharide (LPS) translocation and systemic inflammation. However, excessive exercise may paradoxically diminish microbial diversity and exacerbate intestinal permeability, highlighting the importance of moderate intensity and duration. Exercise ameliorates depressive symptoms through multifaceted interactions with the gut microbiota, primarily via 4 interconnected pathways. First, exercise mitigates neuroinflammation by elevating anti-inflammatory SCFAs such as butyrate, which suppresses NF-κB signaling to attenuate microglial activation and oxidative stress in the hippocampus. Animal studies demonstrate that voluntary wheel running reduces hippocampal TNF‑α and IL-17 levels in stress-induced depression models, while fecal microbiota transplantation (FMT) from exercised mice reverses depressive behaviors by modulating the TLR4/NF‑κB pathway. Second, exercise regulates neurotransmitter dynamics by enriching GABA-producing Lactobacillus and Bifidobacterium, thereby counteracting neuronal hyperexcitability. Aerobic exercise also enhances the abundance of Lactobacillus plantarum and Streptococcus thermophilus, which facilitate 5-HT and dopamine synthesis. Clinical trials reveal that 12 weeks of moderate exercise increases fecal Coprococcus and Blautia abundance, correlating with improved 5-HT bioavailability and reduced depression scores. Third, exercise normalizes HPA axis hyperactivity by reducing cortisol levels and restoring glucocorticoid receptor sensitivity. In rodent models, chronic stress-induced corticosterone elevation is reversed by probiotic supplementation (e.g., Lactobacillus), which enhances endocannabinoid signaling and hippocampal neurogenesis. Furthermore, exercise upregulates brain-derived neurotrophic factor (BDNF) via microbial metabolites like butyrate, promoting histone acetylation and synaptic plasticity. FMT experiments confirm that exercise-induced microbiota elevates prefrontal BDNF expression, reversing stress-induced neuronal atrophy. Fourth, exercise reshapes microbial metabolic crosstalk, diverting tryptophan metabolism toward 5-HT synthesis instead of neurotoxic kynurenine derivatives. Butyrate inhibits indoleamine 2,3-dioxygenase (IDO), a key enzyme in the kynurenine pathway linked to depression. Concurrently, exercise-induced Akkermansia enrichment enhances mucin production, fortifies the gut barrier, and reduces LPS-driven neuroinflammation. Collectively, these mechanisms underscore exercise as a potent modulator of the microbiota-gut-brain axis, offering a holistic approach to alleviating depression through microbial and neurophysiological synergy. Current evidence supports exercise as a potent adjunct therapy for depression, with personalized regimens (e.g., aerobic, resistance, or yoga) tailored to individual microbiota profiles. However, challenges remain in optimizing exercise prescriptions (intensity, duration, and type) and integrating them with probiotics, prebiotics, or FMT for synergistic effects. Future research should prioritize large-scale randomized controlled trials to validate causality, multi-omics approaches to decipher MGB axis dynamics, and mechanistic studies exploring microbial metabolites as therapeutic targets. The authors advocate for a paradigm shift toward microbiota-centric interventions, emphasizing the bidirectional relationship between physical activity and gut ecosystem resilience in mental health management. In conclusion, this review underscores exercise as a multifaceted modulator of the gut-brain axis, offering novel insights into non-pharmacological strategies for depression. By bridging microbial ecology, neuroimmunology, and exercise physiology, this work lays a foundation for precision medicine approaches targeting the gut microbiota to alleviate depressive disorders. 
		                        		
		                        		
		                        		
		                        	
3.Research progress on flexible sensors in oral health monitoring
HUANG Jingwen ; HAN Shuang ; ZHENG Yi ; MA Ning
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(7):612-618
		                        		
		                        			
		                        			Oral health is closely related to facial aesthetics, mastication, pronunciation, and systemic diseases. Flexible sensors can improve current deficiencies in clinical diagnosis and treatment through oral health monitoring. This paper reviews the research on and application of flexible sensors in oral health monitoring in recent years, providing a reference for the further development of flexible sensors in the oral field. The structural basis of flexible sensors includes a flexible substrate, stretchable electrodes, and an active layer, and each part is designed through material selection to adapt to the oral environment. The sensing mechanisms of sensors involve electricity, optics, electrochemistry, and immunology, among which electro-chemical, biological, and optical sensors are particularly prominent in the oral field. The monitored signals include physical signals such as orthodontic force, bite force, respiratory humidity, and implant temperature; chemical signals such as saliva metabolites and oral gases; and biological signals such as periodontal disease and oral cancer markers. At present, flexible sensors still face many challenges in this special oral environment. Future research directions include improving the biocompatibility, moisture resistance, and flexible fitting ability of sensors in the oral cavity; using temperature-insensitive materials and protective films to improve stability; and introducing artificial receptors and sensor arrays to improve factors such as selectivity. In addition, multi-disciplinary cooperation is crucial for breaking through current bottlenecks and achieving more accurate disease diagnosis and health monitoring. In the field of stomatology, finding specific biomarkers related to corresponding oral diseases is the key to sensor health monitoring. Through these efforts, flexible sensors are expected to gain more extensive applications in the field of oral health monitoring.
		                        		
		                        		
		                        		
		                        	
4.Construction of quality control evaluation indicators for common diseases surveillance among students
CUI Mengjie, MENG La, MA Qi, XING Yi
Chinese Journal of School Health 2025;46(6):894-898
		                        		
		                        			Objective:
		                        			To construct a quality control evaluation indicator system for the surveillance of common diseases among students, so as to provide a reference for the quality control of surveillance projects.
		                        		
		                        			Methods:
		                        			Based on literature review and expert interviews, a preliminary framework and candidate indicators were developed from June to August in 2024. Twenty domain experts participated in two rounds of Delphi consultations conducted via email, providing importance ratings, judgment basis, familiarity levels, and feasibility assessments for each indicator. And a quality control evaluation indicator system for the surveillance of common diseases among students was ultimately constructed.
		                        		
		                        			Results:
		                        			The consulted experts aged 33-53, with an average age of (45.25±5.03) years, were from government health administration departments( n =1), centers for disease control and prevention at different levels( n =16), academic and research institutions( n =3). Their work experience in school health related fields ranged from 6 to 33 years, with an average of (16.70±8.25) years. The activeness of experts in both rounds of consultation was 100%, the mean expert authority coefficient was 0.90, and the mean feasibility evaluation was 0.75. Kendall s  W  test showed that the expert coordination coefficient for the first round was 0.26, and for the second round, it was 0.33 ( P <0.01). After two rounds of expert consultation, a set of quality control evaluation indicators for the surveillance of common diseases among students was ultimately constructed, including 6 first level indicators, 19 second level indicators, and 37 third level indicators.
		                        		
		                        			Conclusion
		                        			The scientifically developed evaluation indicator system facilitates high quality implementation of student common disease surveillance programs.
		                        		
		                        		
		                        		
		                        	
5.The Role of Skeletal Muscle Satellite Cells-mediated Muscle Regeneration in The Treatment of Age-related Sarcopenia
Wei-Xiu JI ; Jia-Lin LÜ ; Yi-Fan MA ; Yun-Gang ZHAO
Progress in Biochemistry and Biophysics 2025;52(8):2033-2050
		                        		
		                        			
		                        			Age-related sarcopenia is a progressive, systemic skeletal muscle disorder associated with aging. It is primarily characterized by a significant decline in muscle mass, strength, and physical function, rather than being an inevitable consequence of normal aging. Despite ongoing research, there is still no globally unified consensus among physicians regarding the diagnostic criteria and clinical indicators of this condition. Nonetheless, regardless of the diagnostic standards applied, the prevalence of age-related sarcopenia remains alarmingly high. With the global population aging at an accelerating rate, its incidence is expected to rise further, posing a significant public health challenge. Age-related sarcopenia not only markedly increases the risk of physical disability but also profoundly affects patients’ quality of life, independence, and overall survival. As such, the development of effective prevention and treatment strategies to mitigate its dual burden on both societal and individual health has become an urgent and critical priority. Skeletal muscle regeneration, a vital physiological process for maintaining muscle health, is significantly impaired in age-related sarcopenia and is considered one of its primary underlying causes. Skeletal muscle satellite cells (MSCs), also known as muscle stem cells, play a pivotal role in generating new muscle fibers and maintaining muscle mass and function. A decline in both the number and functionality of MSCs is closely linked to the onset and progression of sarcopenia. This dysfunction is driven by alterations in intrinsic MSC mechanisms—such as Notch, Wnt/β‑Catenin, and mTOR signaling pathways—as well as changes in transcription factors and epigenetic modifications. Additionally, the MSC microenvironment, including both the direct niche formed by skeletal muscle fibers and their secreted cytokines, and the indirect niche composed of extracellular matrix proteins and various cell types, undergoes age-related changes. Mitochondrial dysfunction and chronic inflammation further contribute to MSC impairment, ultimately leading to the development of sarcopenia. Currently, there are no approved pharmacological treatments for age-related sarcopenia. Nutritional intervention and exercise remain the cornerstone of therapeutic strategies. Adequate protein intake, coupled with sufficient energy provision, is fundamental to both the prevention and treatment of this condition. Adjuvant therapies, such as dietary supplements and caloric restriction, offer additional therapeutic potential. Exercise promotes muscle regeneration and ameliorates sarcopenia by acting on MSCs through various mechanisms, including mechanical stress, myokine secretion, distant cytokine signaling, immune modulation, and epigenetic regulation. When combined with a structured exercise regimen, adequate protein intake has been shown to be particularly effective in preventing age-related sarcopenia. However, traditional interventions may be inadequate for patients with limited mobility, poor overall health, or advanced sarcopenia. Emerging therapeutic strategies—such as miRNA mimics or inhibitors, gut microbiota transplantation, and stem cell therapy—present promising new directions for MSC-based interventions. This review comprehensively examines recent advances in MSC-mediated muscle regeneration in age-related sarcopenia and systematically discusses therapeutic strategies targeting MSC regulation to enhance muscle mass and strength. The goal is to provide a theoretical foundation and identify future research directions for the prevention and treatment of this increasingly prevalent condition. 
		                        		
		                        		
		                        		
		                        	
6.Subchronic exposure to benzoapyrene results in lung tissue cell damage caused by ferroptosis in mice
Chaoli ZHOU ; Shihan DING ; Hui HE ; Zhirui MA ; Jie CHEN ; Xingdi GUO ; Yi LYU ; Jinping ZHENG
Journal of Environmental and Occupational Medicine 2025;42(8):971-977
		                        		
		                        			
		                        			Background Exposure to benzo[a]pyrene (BaP) may impair lung function through various mechanisms; however, it remains uncertain whether BaP induces ferroptosis in lung tissue cells, resulting in lung function impairment. Objective To investigate the ferroptosis of lung tissue cells triggered by subchronic BaP exposure in mice and its correlation with lung injury, and to explore the function of ferroptosis in BaP-induced lung tissue damage. Method Seventy-two healthy 3-weeks-old male C57BL/6J mice were acclimatized for 1 week and then randomly divided into six groups: control group (corn oil 10 mL·kg−1), low-dose BaP group (2.5 mg·kg−1), medium-dose BaP group (5 mg·kg−1), high-dose BaP group (10 mg·kg−1), BaP+ferrostatin-1 (Fer-1) group (10 mg·kg−1+1 mg·kg−1), and Fer-1 group (1 mg·kg−1), with 12 mice each group. Corn oil and BaP were administered via gavage every other day, followed by an intraperitoneal injection of Fer-1 the subsequent day, throughout a period of 90 d. Whole-body plethysmography was applied to detect lung function; hematoxylin-eosin staining (HE) and Masson staining were used to observe lung tissue injury and fibrosis; microscopy of alveolar epithelial cells was conducted to reveal mitochondrial morphology; biochemical assays were used to measure the content of tissue iron, malondialdehyde (MDA), and glutathione (GSH), as well as the activity of glutathione peroxidase (GSH-Px); Western blotting and real-time quantitative PCR (RT-qPCR) analyses were performed to reveal the protein and mRNA expression of ferroptosis markers. Results Compared to the control group, the high-dose BaP group showed a significant increase in expiration time (Te) (P<0.01), and a significant decrease in ratio rate of achieving peak expiratory flow (Rpef), tidal volume (TVb), peak inspiratory flow (PIF), minute volume (MVb), and peak expiratory flow (PEF) (P<0.05 or 0.01). Based on the results of HE and Masson staining, partial destruction of alveolar structures, thickening of alveolar walls, infiltration of inflammatory cells, significant thickening of tracheal walls and a large deposition of collagen fibers in lung tissue were observed in the medium- and high-dose BaP groups. By microscopy, the alveolar epithelial cells exposed to low-dose BaP showed condensed chromatin, and the mitochondria exposed to medium and high-dose BaP showed wrinkles, increased mitochondrial membrane density, and diminished mitochondrial cristae. Compared to the control group, in the medium- and high-dose BaP groups, the lung tissue iron content and the expression levels of ACSL4 protein and mRNA significantly elevated (P<0.01 or 0.05), while the mRNA expression level of SLC7A11 significantly decreased (P<0.05); in the high-dose BaP group, the MDA content, COX2 protein, and PTGS2 mRNA expression levels significantly increased (P<0.05 or 0.01), GSH content and GSH-Px activity, GPX4 protein and mRNA expression levels, and the expression level of SLC7A11 protein significantly decreased (P<0.01 or 0.05). The ferroptosis inhibitor Fer-1 markedly reversed respiratory function, morphology, mitochondrial alterations, and the aforementioned ferroptosis-related biochemical indicators. Conclusion Subchronic exposure to BaP can induce ferroptosis in mice lung tissue cells, resulting in compromised lung function.
		                        		
		                        		
		                        		
		                        	
7.Analysis of risk factors for diaphragmatic dysfunction after cardiovascular surgery with extracorporeal circulation: A retrospective cohort study
Xupeng YANG ; Yi SHI ; Fengbo PEI ; Simeng ZHANG ; Hao MA ; Zengqiang HAN ; Zhou ZHAO ; Qing GAO ; Xuan WANG ; Guangpu FAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(08):1140-1145
		                        		
		                        			
		                        			Objective To clarify the risk factors of diaphragmatic dysfunction (DD) after cardiac surgery with extracorporeal circulation. Methods A retrospective analysis was conducted on the data of patients who underwent cardiac surgery with extracorporeal circulation in the Department of Cardiovascular Surgery of Peking University People's Hospital from January 2023 to March 2024. Patients were divided into two groups according to the results of bedside diaphragm ultrasound: a DD group and a control group. The preoperative, intraoperative, and postoperative indicators of the patients were compared and analyzed, and independent risk factors for DD were screened using multivariate logistic regression analysis. Results A total of 281 patients were included, with 32 patients in the DD group, including 23 males and 9 females, with an average age of (64.0±13.5) years. There were 249 patients in the control group, including 189 males and 60 females, with an average age of (58.0±11.2) years. The body mass index of the DD group was lower than that of the control group [(18.4±1.5) kg/m2 vs. (21.9±1.8) kg/m2, P=0.004], and the prevalence of hypertension, chronic obstructive pulmonary disease, heart failure, and renal insufficiency was higher in the DD group (P<0.05). There was no statistical difference in intraoperative indicators (operation method, extracorporeal circulation time, aortic clamping time, and intraoperative nasopharyngeal temperature) between the two groups (P>0.05). In terms of postoperative aspects, the peak postoperative blood glucose in the DD group was significantly higher than that in the control group (P=0.001), and the proportion of patients requiring continuous renal replacement therapy was significantly higher than that in the control group (P=0.001). The postoperative reintubation rate, tracheotomy rate, mechanical ventilation time, and intensive care unit stay time in the DD group were higher or longer than those in the control group (P<0.05). Multivariate logistic regression analysis showed that low body mass index [OR=0.72, 95%CI (0.41, 0.88), P=0.011], preoperative dialysis [OR=2.51, 95%CI (1.89, 4.14), P=0.027], low left ventricular ejection fraction [OR=0.88, 95%CI (0.71, 0.93), P=0.046], and postoperative hyperglycemia [OR=3.27, 95%CI (2.58, 5.32), P=0.009] were independent risk factors for DD. Conclusion The incidence of DD is relatively high after cardiac surgery, and low body mass index, preoperative renal insufficiency requiring dialysis, low left ventricular ejection fraction, and postoperative hyperglycemia are risk factors for DD.
		                        		
		                        		
		                        		
		                        	
8.Correlation between depressive symptom and traditional Chinese medicine constitution among school aged children and adolescents
Chinese Journal of School Health 2025;46(9):1222-1225
		                        		
		                        			Objective:
		                        			To explore the correlation between traditional Chinese medicine (TCM) constitution and depressive symptom among school aged children and adolescents, so as to provide evidences for informing constitution based regulation and prevention of depressive symptom.
		                        		
		                        			Methods:
		                        			From June to December 2024, a total of 4 729 students aged 6-14 were recruited by cluster random sampling from 10 primary schools in Baoding (Hebei Province), Heze and Liaocheng (Shandong Province). General information, TCM constitution and depressive symptom were collected. Restricted cubic spline (RCS) models were used to analyze related factors and threshold effects of depressive symptom. Binary Logistic regression was applied to examine the association between depressive symptom and TCM constitution, with subgroup analyses conducted.
		                        		
		                        			Results:
		                        			The detection rate of depressive symptom among the included children and adolescents was 25.82%. RCS analyses indicated non linear associations between depressive symptom and age (inflection point at 10 years old), bedtime (inflection point at 22:00), and wake up time (inflection point at  6:30 ) (all  P non linearity <0.01). Linear associations were observed with body mass index (BMI) and sleep duration (all  P non linearity > 0.05 ). After adjusting for covariates such as age, BMI and sleep status, binary Logistic regression analyses showed that Yin deficient constitution ( OR =1.26, 95% CI =1.09-1.45) and Phlegm-dampness constitution ( OR =1.42, 95% CI =1.11-1.82) were significantly associated with depressive symptom among children and adolescents (all  P <0.05).
		                        		
		                        			Conclusions
		                        			Depressive symptom among school aged children and adolescents is primarily associated with Yin deficiency and Phlegm dampness constitutions in TCM constitution. Active attention should be paid to susceptible TCM constitution among children and adolescents. Targeted health guidance and interventions should be implemented to improve TCM constitution health status for preventing the occurrence of depressive symptom.
		                        		
		                        		
		                        		
		                        	
9.Association between mental health and muscle strength among Chinese adolescents aged 13-18
Chinese Journal of School Health 2025;46(9):1232-1236
		                        		
		                        			Objective:
		                        			To explore the association between mental health and muscle strength among Chinese adolescents aged  13- 18, providing a theoretical foundation and intervention strategies for mental health promotion.
		                        		
		                        			Methods:
		                        			Data were obtained from the 2019 Chinese National Survey on Students  Constitution and Health, including 98 631 Chinese adolescents aged  13- 18. Psychological distress was assessed by using the Kessler Psychological Distress Scale (K10), and mental well being was measured with the Warwick-Edinburgh Mental Well being Scale (WEMWBS). Based on the gender  and age specific  Z scores of various test items [grip strength, standing long jump, pull ups (for males), and sit ups (for females)], muscle strength index (MSI) was constructed to evaluate the comprehensive level of muscle strength in adolescents. According to the Dual factor Model (DFM) of mental health, participants were categorized into four groups:troubled, symptomatic but content, vulnerable, and complete mental health. Gender differences were analyzed by using  Chi-square tests, trends were tested with Cochran-Armitage tests, and multinomial Logistic regression models were applied to assess associations between muscle strength and mental health among adolescents.
		                        		
		                        			Results:
		                        			In 2019, 37.4% of Chinese adolescents aged 13-18 were reported of high mental distress, and 59.9% were reported of low mental well being. Boys had significantly lower rates of high mental distress (35.3%) and low mental well being (55.6%) compared to girls (39.4%, 64.3%), and the differences were of statistical significance ( χ 2=176.13, 780.42, both  P <0.05). In 2019, the rate of complete mental health among adolescents showed a downward trend with increasing age ( χ 2 trend = 258.47) and a gradual upward trend with increasing muscle strength levels ( χ 2 trend =123.14),and both boys and girls exhibited similar trends ( χ 2 trend =103.83, 168.46;  57.00 , 67.34) (all  P <0.05). The results of the unordered multiclass Logistic regression model showed that after controlling for confounding factors such as age and gender, when the completely pathological group as a reference, for every 1 unit increase in MSI in adolescents, the likelihood of being in a completely mental health state increased by 29% ( OR = 1.29); for every unit increase in the  Z-score for pull ups, the likelihood of being in a completely mental health state increased by 6% ( OR =1.06) among boys; for every 1 unit increase in sit up  Z score, the likelihood of being in a completely mental health state increased by 19% ( OR =1.19) among girls (all  P <0.05).
		                        		
		                        			Conclusions
		                        			The mental health status of Chinese adolescents is not good enough. Muscle strength is positively associated with mental health.
		                        		
		                        		
		                        		
		                        	
10.Updates and amendments of the Chinese Pharmacopoeia 2025 Edition (Volume Ⅰ)
LI Hao ; SHEN Mingrui ; ZHANG Pang ; ZHAI Weimin ; NI Long ; HAO Bo ; ZHAO Yuxin ; HE Yi ; MA Shuangcheng ; SHU Rong
Drug Standards of China 2025;26(1):017-022
		                        		
		                        			
		                        			The Chinese Pharmacopoeia is the legal technical standard which should be followed during the research, production, use, and administration of drugs. At present, the new edition of the Chinese Pharmacopoeia is planned to be promulgated and implemented. This article summarizes and analyzes the main characteristics and the content of updates and amendments of the Chinese Pharmacopoeia 2025 Edition(Volume Ⅰ), to provide a reference for the correct understanding and accurate implementation the new edition of the pharmacopoeia.
		                        		
		                        		
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail