1.Material basis and action mechanism of drug-containing serum of Modified Erxian Pill inhibiting macrophage pyroptosis
Siyuan LI ; Yuru WANG ; Ye XU ; Di GUO ; Nan NAN ; Yang LIU ; Jie ZHAO ; Huiqin HAO
Chinese Journal of Tissue Engineering Research 2025;29(19):4029-4037
		                        		
		                        			
		                        			BACKGROUND:Our previous study found that Modified Erxian Pill could alleviate inflammation in collagen-induced arthritis rats,but its mechanism needs to be further verified. OBJECTIVE:To analyze the components absorbed in the blood of Modified Erxian Pill,and observe the effect of the drug-containing serum of Modified Erxian Pill on pyroptosis of J774A.1 macrophages. METHODS:(1)Analysis of components absorbed in the blood of Modified Erxian Pill:Ultra-high performance liquid chromatography-high resolution mass spectrometry was used to detect and identify Modified Erxian Pill and its components absorbed in the blood.(2)Effect of the drug-containing serum of Modified Erxian Pill on pyroptosis of J774A.1 macrophages:Molecular docking technology was used to initially verify the sesquiterpenoids and NLRP3 in components absorbed in the blood of Modified Erxian Pill.J774A.1 macrophages were randomly divided into blank control group,lipopolysaccharide+adenosine triphosphate group,and lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill with low(2.5%),medium(5%),and high(10%)dose groups.The release of lactate dehydrogenase in the cell supernatant of each group was detected according to the kit instructions.The levels of interleukin-1β and interleukin-18 in cell supernatant were detected in each group by ELISA.The cell membrane damage was detected by Hoechst/PI staining.The expression levels of NLRP3,Caspase-1,GSDMD,and GSDMD-N protein in the cells of each group were detected by western blot assay. RESULTS AND CONCLUSION:(1)A total of 32 active components of Modified Erxian Pill were identified,and 21 components entered the blood.The main components into blood included a variety of sesquiterpenoids.(2)Molecular docking results showed that 3-O-Acetyl-13-deoxyphomenone,Incensol oxide,Atractylenolide III,Rupestonic acid,and 3,7-Dihydroxy-9,11-eremophiladien-8-one had good binding activity with NLRP3.(3)Compared with the blank control group,lactate dehydrogenase activity and the expression levels of interleukin-1β and interleukin-18 were significantly increased in cell supernatant of lipopolysaccharide+adenosine triphosphate group(P<0.001).Hoechst/PI staining showed that the number of PI-positive cells was significantly increased.After the intervention of lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill group,all of them showed different degrees of reduction.(4)Compared with the blank control group,NLRP3,Caspase-1,GSDMD,and GSDMD-N protein expression levels were significantly increased in the lipopolysaccharide+adenosine triphosphate group(P<0.05).Compared with lipopolysaccharide+adenosine triphosphate group,the protein expressions of NLRP3,Caspase-1,GSDMD,and GSDMD-N were significantly decreased in the lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill group(P<0.05),and had a certain dose dependence.These findings verify that the drug-containing serum of Modified Erxian Pill may inhibit the pyroptosis of J774A.1 macrophages by regulating the NLRP3/Caspase-1/GSDMD pathway.
		                        		
		                        		
		                        		
		                        	
2.Epidemiological characteristics of positive nucleic acid test results of the discharged re-positive cases infected with SARS-CoV-2 in Pudong New Area, Shanghai
Yanxin XIE ; Songqing GUO ; Lili FENG ; Chuchu YE ; Shaotan XIAO ; Lipeng HAO ; Dan LIU
Shanghai Journal of Preventive Medicine 2025;37(3):222-226
		                        		
		                        			
		                        			ObjectiveTo obtain the epidemiological characteristics of re-positive cases infected with SARS-CoV-2 in Pudong New Area from March to July 2022, including clinical manifestations, duration of a negative nucleic acid conversion after tested for re-positive, and length of time from the discharge of the initial infection to the most recent re-positivity, so as to provide a scientific basis for the prevention and control of COVID-19. MethodsA questionnaire survey was conducted among the re-positive cases infected with SARS-CoV-2 after discharged from hospital/quarantine facility in Pudong New Area, and descriptive epidemiological methods were used for characteristics analysis. ResultsA total of 2 422 re-positive cases met the inclusive and exclusive criteria, with males accounting for 61.02%. The age distribution mainly fell between 18 and <60 years old, accounting for 62.39%. Clinical manifestations were predominantly asymptomatic (72.15%), followed by cough (12.03%) and sore throat (6.58%). Among the stratified randomized sample of 416 individuals, there were statistically significant differences in symptoms (χ²=262.667, P<0.001), clinical typing (χ²=12.996, P=0.001), and duration of a negative nucleic acid conversion (χ²=142.578, P<0.001) between the initial positive and re-positive instances. Besides, statistically significant differences in symptoms (χ²=13.696, P=0.016) and self-perception of the severity of re-infection (χ²=7.923, P=0.048) between the initial and re-positive cases were observed by different genders. ConclusionAmong re-positive cases, males experienced milder symptoms compared to females, and the self-perception of symptoms during re-positivity is milder than that in the initial positive infection. The length of time for negative nucleic acid conversion during the initial positive period is shorter than that during the re-positive period. 
		                        		
		                        		
		                        		
		                        	
3.Analysis of syncopal DRVR in blood donors: multicenter hemovigilance data (2020—2023)
Junhong YANG ; Qing XU ; Wenqin ZHU ; Fei TANG ; Ruru HE ; Zhenping LU ; Zhujiang YE ; Fade ZHONG ; Gang WU ; Guoqiang FENG ; Xiaojie GUO ; Jia ZENG ; Xia HUANG
Chinese Journal of Blood Transfusion 2025;38(8):1071-1076
		                        		
		                        			
		                        			Objective: Data on syncopal donation-related vasovagal reaction (DRVR) collected from 74 blood centers between 2020 and 2023 was statistically analyzed to provide a reference for developing preventive strategies against syncopal DRVR. Methods: Data on blood donation adverse reactions and basic information of donors from 2020 to 2023 were collected through the information management system at monitoring sentinel sites. Statistical analysis was performed on the following aspects of syncopal DRVR: characteristics of donors who experienced syncope, reported incidence, triggers, duration, presence and occurrence time of syncope-related trauma, clinical management including outpatient and inpatient treatment, and severity grading. Results: From 2020 to 2023, 45 966 donation-related adverse reactions were recorded. Of these, 1 665 (3.72%) cases were syncopal DRVR. The incidence of syncopal DRVR decreased with age, being the highest in the 18-22 age group. Incidence was significantly higher in female donors than male donors, in first-time donors than repeat donors, and in university and individual donors than group donors (all P<0.05). There was no statistically significant difference among different blood donation locations (P>0.05). The top three triggers were tension, fatigue, and needle phobia or fear of blood. Among syncopal DRVR cases, 60.36% occurred during blood collection, 87.63% lasted for less than 60 seconds, and 5.05% were accompanied by trauma. Notably, 57.14% of these traumas occurred after donor had left the blood collection site. Syncope severity was graded based on required treatment: grade 1 (fully recovered without treatment, 95.50%); grade 2 (recovered after outpatient treatment, 4.02%); and grade 3 (recovered after inpatient treatment, 0.48%). Conclusion: By analyzing the data of syncopal DRVR cases, it is possible to provide a reference for formulating blood donor safety policies.
		                        		
		                        		
		                        		
		                        	
4.Exploration of Rat Fetal Lung Tissue Fixation Methods
Liyu LIU ; Bo JI ; Xiaoxuan LIU ; Yang FANG ; Ling ZHANG ; Tingting GUO ; Ye QUAN ; Hewen LI ; Yitian LIU
Laboratory Animal and Comparative Medicine 2025;45(4):432-438
		                        		
		                        			
		                        			ObjectiveThis study explores the methods of lung tissue extraction and fixation required for pathological studies of fetal rats, based on the unique physiological structure of fetal rat lung tissue and existing lung tissue fixation techniques for adult rats. MethodsSix pregnant adult SD rats at 20.5 days of gestation were subjected to cesarean section to obtain fetal rats. Four healthy fetal rats with similar body weight, vital signs, and respiratory status were selected from each pregnant rat, and they were randomly divided into the following groups using a random number table: direct lung infiltration group, lung infiltration group after intratracheal infusion, whole-body infiltration group of fetal rats, and whole-body infiltration group after intratracheal infusion of fetal rats. To systematically compare and analyze the anatomical morphology under different fixation methods, lung tissues from four groups of fetal rats were harvested, perfused, and fixed, and the gross morphology of lung tissues in each group was observed. Paraffin sections were prepared and stained with Hematoxylin-Eosin (H&E). The histological morphology of the whole lung, alveoli, and bronchi was further examined under optical microscopy. ResultsIn the direct lung infiltration group, the hilar structures were unclear, lung lobation was indistinct, the shape was irregular, lung cavities were small, and alveoli and bronchi were shrunken. In the lung infiltration group after intratracheal infusion, the hilar structures were clear, lobation was pronounced, the shape was regular, lung cavities were large, and alveoli and bronchi were full. Both the whole-body infiltration group and whole-body infiltration group after intratracheal infusion of fetal rats exhibited visible lungs, hearts, skins, and other organs. The lung tissues of both groups showed obvious lobulation, irregular shape, and damage at the margins of lung lobes. In the whole-body infiltration group, the thoracic cavities of the fetus were flattened, lung cavities were small, and alveoli and bronchi were shrunken. In the whole-body infiltration group after intratracheal infusion of fetal rats, the fetal thoracic cavities were full, lung cavities were large, and alveoli and bronchi were relatively full. ConclusionThe lung infiltration after intratracheal infusion method for fetal rat lung tissue fixation outperforms direct lung infiltration, whole-body infiltration of fetal rats, and whole-body infiltration after intratracheal infusion of fetal rats in terms of preservation of the lung tissue's original morphology, paraffin sectioning, staining, and pathological observation and analysis. The embedding, sectioning, and staining processes are also simple and save consumables. Therefore, intratracheal infusion followed by lung infiltration method is recommended for fixation in histopathological observation of fetal rat lung tissue. 
		                        		
		                        		
		                        		
		                        	
5.Phenomics of traditional Chinese medicine 2.0: the integration with digital medicine
Min Xu ; Xinyi Shao ; Donggeng Guo ; Xiaojing Yan ; Lei Wang ; Tao Yang ; Hao LIANG ; Qinghua PENG ; Lingyu Linda Ye ; Haibo Cheng ; Dayue Darrel Duan
Digital Chinese Medicine 2025;8(3):282-299
		                        		
		                        			Abstract
		                        			Modern western medicine typically focuses on treating specific symptoms or diseases, and traditional Chinese medicine (TCM) emphasizes the interconnections of the body’s various systems under external environment and takes a holistic approach to preventing and treating diseases. Phenomics was initially introduced to the field of TCM in 2008 as a new discipline that studies the laws of integrated and dynamic changes of human clinical phenomes under the scope of the theories and practices of TCM based on phenomics. While TCM Phenomics 1.0 has initially established a clinical phenomic system centered on Zhenghou (a TCM definition of clinical phenome), bottlenecks remain in data standardization, mechanistic interpretation, and precision intervention. Here, we systematically elaborates on the theoretical foundations, technical pathways, and future challenges of integrating digital medicine with TCM phenomics under the framework of “TCM phenomics 2.0”, which is supported by digital medicine technologies such as artificial intelligence, wearable devices, medical digital twins, and multi-omics integration. This framework aims to construct a closed-loop system of “Zhenghou–Phenome–Mechanism–Intervention” and to enable the digitization, standardization, and precision of disease diagnosis and treatment. The integration of digital medicine and TCM phenomics not only promotes the modernization and scientific transformation of TCM theory and practice but also offers new paradigms for precision medicine. In practice, digital tools facilitate multi-source clinical data acquisition and standardization, while AI and big data algorithms help reveal the correlations between clinical Zhenghou phenomes and molecular mechanisms, thereby improving scientific rigor in diagnosis, efficacy evaluation, and personalized intervention. Nevertheless, challenges persist, including data quality and standardization issues, shortage of interdisciplinary talents, and insufficiency of ethical and legal regulations. Future development requires establishing national data-sharing platforms, strengthening international collaboration, fostering interdisciplinary professionals, and improving ethical and legal frameworks. Ultimately, this approach seeks to build a new disease identification and classification system centered on phenomes and to achieve the inheritance, innovation, and modernization of TCM diagnostic and therapeutic patterns.
		                        		
		                        		
		                        		
		                        	
6.Spectrum-effect Relationship of Bupleuri Radix Processed with Trionyx sinensis Blood for Yin Deficiency Based on Saponins
Mengyu HOU ; Xia ZHAO ; Zhiyu GUO ; Ting LIU ; Yuexing MA ; Yaohui YE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):147-155
		                        		
		                        			
		                        			ObjectiveTo analyze the pharmacodynamic activity of Bupleuri Radix processed with Trionyx sinensis blood in the treatment of Yin deficiency and study the spectrum-effect relationship of this medicine. MethodsHigh performance liquid chromatography was employed to establish the fingerprints of 15 batches of Bupleuri Radix processed with Trionyx sinensis blood, and the similarity was evaluated according to the SOP of Similarity Evaluation System of Chromatographic Fingerprint of TCM (version 2012). A mouse model of Yin deficiency induced by thyroxine was established. The relationship between the active components and the effect on Yin deficiency was explored by grey correlation analysis and partial least squares method based on the changes in the serum levels of triiodothyronine (T3), thyroxine (T4), cyclic adenosine phosphate (cAMP), and cyclic guanosine phosphate (cGMP). The components screened out based on the spectrum-effect relationship were used for retrieval of the targets from the Traditional Chinese Medicine Systems Pharmacology and Analysis Database (TCMSP), The Encyclopedia of Traditional Chinese Medicine (ETCM), and Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine (TCMIP). Furthermore, the Online Mendelian Inheritance in Man (OMIM), GeneCards, TTD, DisGeNET, and Drugbank were employed to establish the active component-target against Yin deficiency network of Bupleuri Radix processed with Trionyx sinensis blood. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out for the core targets. Real-time PCR was conducted to verify the predicted key pathways and mechanisms. ResultsThe fingerprints of the 15 batches of Bupleuri Radix processed with Trionyx sinensis blood showed the similarities of 0.976-0.999 with the control fingerprint. Compared with the model group, the drug administration group showed elevated levels of T3 and T4 and lowered levels of cAMP, cGMP and cAMP/cGMP. The results of grey correlation analysis showed that active components in terms of the correlations followed the trend of saikosaponin B1 > saikosaponin B2 > saikosaponin C > saikosaponin D > saikosaponin A. The partial least squares analysis showed that saikosaponins A, D, B1, and B2 had higher VIP values. Network pharmacology predicted a total of 30 common targets, which were enriched in 276 GO terns and 115 KEGG pathways. The results of Real-time PCR showed that the model group had lower mRNA levels of Caspase-9, kinase insert domain receptor (KDR), and mammalian target of rapamycin (mTOR) and higher mRNA level of mouse double minute 2 homolog (MDM2) than the blank group and the drug administration group. ConclusionBupleuri Radix processed with Trionyx sinensis blood has therapeutic effect on Yin deficiency syndrome, which provides a new idea for studying Bupleuri Radix processed with Trionyx sinensis blood. 
		                        		
		                        		
		                        		
		                        	
7.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
		                        		
		                        			
		                        			Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice. 
		                        		
		                        		
		                        		
		                        	
8.Hypoglycemic Effect and Mechanism of ICK Pattern Peptides
Lin-Fang CHEN ; Jia-Fan ZHANG ; Ye-Ning GUO ; Hui-Zhong HUANG ; Kang-Hong HU ; Chen-Guang YAO
Progress in Biochemistry and Biophysics 2025;52(1):50-60
		                        		
		                        			
		                        			Diabetes is a very complex endocrine disease whose common feature is the increase in blood glucose concentration. Persistent hyperglycemia can lead to blindness, kidney and heart disease, neurodegeneration, and many other serious complications that have a significant impact on human health and quality of life. The number of people with diabetes is increasing yearly. The global diabetes prevalence in 20-79 year olds in 2021 was estimated to be 10.5% (536.6 million), and it will rise to 12.2% (783.2 million) in 2045. The main modes of intervention for diabetes include medication, dietary management, and exercise conditioning. Medication is the mainstay of treatment. Marketed diabetes drugs such as metformin and insulin, as well as GLP-1 receptor agonists, are effective in controlling blood sugar levels to some extent, but the preventive and therapeutic effects are still unsatisfactory. Peptide drugs have many advantages such as low toxicity, high target specificity, and good biocompatibility, which opens up new avenues for the treatment of diabetes and other diseases. Currently, insulin and its analogs are by far the main life-saving drugs in clinical diabetes treatment, enabling effective control of blood glucose levels, but the risk of hypoglycemia is relatively high and treatment is limited by the route of delivery. New and oral anti-diabetic drugs have always been a market demand and research hotspot. Inhibitor cystine knot (ICK) peptides are a class of multifunctional cyclic peptides. In structure, they contain three conserved disulfide bonds (C3-C20, C7-C22, and C15-C32) form a compact “knot” structure, which can resist degradation of digestive protease. Recent studies have shown that ICK peptides derived from legume, such as PA1b, Aglycin, Vglycin, Iglycin, Dglycin, and aM1, exhibit excellent regulatory activities on glucose and lipid metabolism at the cellular and animal levels. Mechanistically, ICK peptides promote glucose utilization by muscle and liver through activation of IR/AKT signaling pathway, which also improves insulin resistance. They can repair the damaged pancrease through activation of PI3K/AKT/Erk signaling pathway, thus lowering blood glucose. The biostability and hypoglycemic efficacy of the ICK peptides meet the requirements for commercialization of oral drugs, and in theory, they can be developed into natural oral anti-diabetes peptide drugs. In this review, the structural properties, activity and mechanism of ICK pattern peptides in regulating glucose and lipid metabolism were summaried, which provided a reference for the development of new oral peptides for diabetes. 
		                        		
		                        		
		                        		
		                        	
9.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
		                        		
		                        			
		                        			Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues. 
		                        		
		                        		
		                        		
		                        	
10.Digital-Intellectualized Upgrade and Clinical Application of National Rare Diseases Registry System of China
Jian GUO ; Ye JIN ; Peng LIU ; Dingding ZHANG ; Limeng CHEN ; Yicheng ZHU ; Shuyang ZHANG
JOURNAL OF RARE DISEASES 2025;4(1):54-60
Since its establishment in 2016, the National Rare Diseases Registry System of China (NRDRS) has accumulated valuable case data and bio-specimen for basic and clinical research on rare diseases in China. However, the emerging challenges in clinical diagnosis and treatment of rare diseases make it unable for data and resource platform to fully meet the diversified needs. Under this backdrop, we have developed a protocol to optimize and upgrade the system based on the core functions of the NRDRS platform. The goal is to leverage intelligent digital technologies to transform NRDRS into a new platform integrating multimodal data and auxiliary diagnostic and treatment functions. It is specified as the development and construction of "one platform and four intelligent tools." Currently, we have upgraded and developed NRDRS platform, intelligent tool for genotype-phenotype analysis of rare diseases, AI-assisted diagnostic tool for rare diseases, remote multidisciplinary diagnosis and teaching tool for rare diseases, drug screening and validation tool for rare diseases. The next step will focus on the promotion of the application of these tools in clinical settings in order to address the issue of severe imbalance in the allocation of resources for the diagnosis and treatment of rare diseases. This article provides an overview of the digital and intelligent upgrades of the NRDRS, the trials in applications in clinical settings, and direction in the future.
            
Result Analysis
Print
Save
E-mail