1.Evaluation of Simulated Weightlessness Model of Hindlimb Unloading Miniature Pigs and Their Tissue Damage
Yingxin TU ; Yilan JI ; Fei WANG ; Dongming YANG ; Dongdong WANG ; Zhixin SUN ; Yuexin DAI ; Yanji WANG ; KAN GUANGHAN ; Bin WU ; Deming ZHAO ; Lifeng YANG
Laboratory Animal and Comparative Medicine 2024;44(5):475-486
Objective To establish a weightlessness simulation animal model using miniature pigs, leveraging the characteristic of multiple systems’ tissue structures and functions similar to those of humans, and to observe pathophysiological changes, providing a new method for aerospace research. Methods Nine standard-grade miniature pigs were selected and randomly divided into an experimental group (n=7) and a control group (n=2). The experimental group was fixed using customized metal cages, with canvas slings suspending their hind limbs off the ground, and the body positioned at a -20° angle relative to the ground to simulate unloading for 30 days (24 hours a day). Data on body weight, blood volume, and blood biochemistry indicators were collected at different time points for statistical analysis of basic physiological changes. After the experiment, the miniature pigs were euthanized and tissue samples were collected for histopathological observation of the cardiovascular, skeletal and muscle systems HE and Masson staining. Statistical analysis was also conducted on the thickness of arterial vessels and the diameter of skeletal muscle fibers. Additionally, western blotting was employed to detect the expression levels of skeletal muscle atrophy-related proteins, including muscle-specific RING finger protein 1 (MuRf-1) and muscle atrophy F-box (MAFbx, as known as Atrogin-1), while immunohistochemistry was used to detect the expression of glial fibrillary acidic protein (GFAP), an indicator of astrocyte activation in the brain, reflecting the pathophysiological functional changes across systems. Results After hindlimb unloading, the experimental group showed significant decreases in body weight (P<0.001) and blood volume (P<0.01). During the experiment, hemoglobin, hematocrit, and red blood cell count levels significantly decreased (P<0.05) but gradually recovered. The expression levels of alanine aminotransferase and γ-glutamyltransferase initially decreased (P<0.05) before rebounding, while albumin significantly decreased (P<0.001) and globulin significantly increased (P<0.01). Creatinine significantly decreased (P<0.05). The average diameter of gastrocnemius muscle fibers in the experimental group significantly shortened (P<0.05), with a leftward shift in the distribution of muscle fiber diameters and an increase in small-diameter muscle fibers. Simultaneously, Atrogin-1 expression in the gastrocnemius and paravertebral muscles significantly increased (P<0.05). These changes are generally consistent with the effects of weightlessness on humans and animals in space. Furthermore, degenerative changes were observed in some neurons of the cortical parietal lobe, frontal lobe, and hippocampal regions of the experimental group, with a slight reduction in the number of Purkinje cells in the cerebellar region, and a significant enhancement of GFAP-positive signals in the hippocampal area (P<0.05). Conclusion Miniature pigs subjected to a -20° angle hind limb unloading for 30 days maybe serve as a new animal model for simulating weightlessness, applicable to related aerospace research.
2.Construction, screening and immunogenicity of the recombinant poxvirus vaccine rVTTδTK-RBD against SARS-CoV-2.
Renshuang ZHAO ; Yilong ZHU ; Chao SHANG ; Jicheng HAN ; Zirui LIU ; Zhiru XIU ; Shanzhi LI ; Yaru LI ; Xia YANG ; Xiao LI ; Ningyi JIN ; Xin JIN ; Yiquan LI
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):19-25
Objective To construct a recombinant poxvirus vector vaccine, rVTTδTK-RBD, and to evaluate its safety and immunogenicity. Methods The receptor-binding domain (RBD) gene was synthesized with reference to the gene sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was inserted into the polyclonal site of the self-constructed recombinant plasmid pSTKE, to construct the recombinant poxvirus shuttle vector pSTKE-RBD. This was then transfected into BHK-21 cells pre-infected with the vaccinia virus Tiantan strain (VTT). The recombinant poxvirus rVTTδTK-RBD was successfully obtained after several rounds of fluorescence phage screening. The effect of rVTTδTK-RBD on the body mass of BALB/c mice was detected after immunizing mice by intra-nasal vaccination. The levels of specific and neutralizing antibodies produced by rVTTδTK-RBD on BALB/c mice were analyzed after immunizing mice intramuscularly. The effect of rVTTδTK-RBD on T cell subsets in BALB/c mice was detected by flow cytometry. Results Through homologous recombination, enhanced green fluorescent protein (EGFP) screening marker, and multiple rounds of fluorescent phosphorescence phage screening, a recombinant poxvirus rVTTδTK-RBD, expressing RBD with deletions in the thymidine kinase (TK) gene, was successfully obtained, which was validated by PCR. The in vivo experiments on BALB/c mice showed that rVTTδTK-RBD was highly immunogenic against SARS-CoV-2 and significantly reduced toxicity to the body compared to the parental strain VTT. Conclusion The recombinant poxvirus vaccine rVTTδTK-RBD against SARS-CoV-2 is successfully constructed and obtained, with its safety and immunogenicity confirmed through various experiments.
Animals
;
Mice
;
SARS-CoV-2/genetics*
;
COVID-19
;
Vaccines, Synthetic/genetics*
;
Genes, Reporter
;
Bacteriophages
;
Mice, Inbred BALB C
3.Norepinephrine triggers glutamatergic long-term potentiation in hypothalamic paraventricular nucleus magnocellular neuroendocrine cells through postsynaptic ββ1-AR/PKA signaling pathway in vitro in rats
Jing-Ri JIN ; Zhao-Yi ZHANG ; Chun-Ping CHU ; Yu-Zi LI ; De-Lai QIU
The Korean Journal of Physiology and Pharmacology 2024;28(6):569-576
Norepinephrine (NE) modulates synaptic transmission and long-term plasticity through distinct subtype adrenergic receptor (AR)-mediated-intracellular signaling cascades. However, the role of NE modulates glutamatergic long-term potentiation (LTP) in the hypothalamic paraventricular nucleus (PVN) magnocellular neuroendocrine cells (MNCs) is unclear. We here investigate the effect of NE on high frequency stimulation (HFS)-induced glutamatergic LTP in rat hypothalamic PVN MNCs in vitro, by whole-cell patch-clamp recording, biocytin staining and pharmacological methods. Delivery of HFS induced glutamatergic LTP with a decrease in N2/N1 ratio in the PVN MNCs, which was enhanced by application of NE (100 nM).HFS-induced LTP was abolished by the blockade of N-methyl-D-aspartate receptors (NMDAR) with D-APV, but it was rescued by the application of NE. NE failed to rescue HFS-induced LTP of MNCs in the presence of a selective β1-AR antagonist, CGP 20712. However, application of β1-AR agonist, dobutamine HCl rescued HFS-induced LTP of MNCs in the absence of NMDAR activity. In the absence of NMDAR activity, NE failed to rescue HFS-induced MNC LTP when protein kinase A (PKA) was inhibited by extracellular applying KT5720 or intracellular administration of PKI. These results indicate that NE activates β1-AR and triggers HFS to induce a novel glutamatergic LTP of hypothalamic PVN NMCs via the postsynaptic PKA signaling pathway in vitro in rats.
4.Norepinephrine triggers glutamatergic long-term potentiation in hypothalamic paraventricular nucleus magnocellular neuroendocrine cells through postsynaptic ββ1-AR/PKA signaling pathway in vitro in rats
Jing-Ri JIN ; Zhao-Yi ZHANG ; Chun-Ping CHU ; Yu-Zi LI ; De-Lai QIU
The Korean Journal of Physiology and Pharmacology 2024;28(6):569-576
Norepinephrine (NE) modulates synaptic transmission and long-term plasticity through distinct subtype adrenergic receptor (AR)-mediated-intracellular signaling cascades. However, the role of NE modulates glutamatergic long-term potentiation (LTP) in the hypothalamic paraventricular nucleus (PVN) magnocellular neuroendocrine cells (MNCs) is unclear. We here investigate the effect of NE on high frequency stimulation (HFS)-induced glutamatergic LTP in rat hypothalamic PVN MNCs in vitro, by whole-cell patch-clamp recording, biocytin staining and pharmacological methods. Delivery of HFS induced glutamatergic LTP with a decrease in N2/N1 ratio in the PVN MNCs, which was enhanced by application of NE (100 nM).HFS-induced LTP was abolished by the blockade of N-methyl-D-aspartate receptors (NMDAR) with D-APV, but it was rescued by the application of NE. NE failed to rescue HFS-induced LTP of MNCs in the presence of a selective β1-AR antagonist, CGP 20712. However, application of β1-AR agonist, dobutamine HCl rescued HFS-induced LTP of MNCs in the absence of NMDAR activity. In the absence of NMDAR activity, NE failed to rescue HFS-induced MNC LTP when protein kinase A (PKA) was inhibited by extracellular applying KT5720 or intracellular administration of PKI. These results indicate that NE activates β1-AR and triggers HFS to induce a novel glutamatergic LTP of hypothalamic PVN NMCs via the postsynaptic PKA signaling pathway in vitro in rats.
5.Norepinephrine triggers glutamatergic long-term potentiation in hypothalamic paraventricular nucleus magnocellular neuroendocrine cells through postsynaptic ββ1-AR/PKA signaling pathway in vitro in rats
Jing-Ri JIN ; Zhao-Yi ZHANG ; Chun-Ping CHU ; Yu-Zi LI ; De-Lai QIU
The Korean Journal of Physiology and Pharmacology 2024;28(6):569-576
Norepinephrine (NE) modulates synaptic transmission and long-term plasticity through distinct subtype adrenergic receptor (AR)-mediated-intracellular signaling cascades. However, the role of NE modulates glutamatergic long-term potentiation (LTP) in the hypothalamic paraventricular nucleus (PVN) magnocellular neuroendocrine cells (MNCs) is unclear. We here investigate the effect of NE on high frequency stimulation (HFS)-induced glutamatergic LTP in rat hypothalamic PVN MNCs in vitro, by whole-cell patch-clamp recording, biocytin staining and pharmacological methods. Delivery of HFS induced glutamatergic LTP with a decrease in N2/N1 ratio in the PVN MNCs, which was enhanced by application of NE (100 nM).HFS-induced LTP was abolished by the blockade of N-methyl-D-aspartate receptors (NMDAR) with D-APV, but it was rescued by the application of NE. NE failed to rescue HFS-induced LTP of MNCs in the presence of a selective β1-AR antagonist, CGP 20712. However, application of β1-AR agonist, dobutamine HCl rescued HFS-induced LTP of MNCs in the absence of NMDAR activity. In the absence of NMDAR activity, NE failed to rescue HFS-induced MNC LTP when protein kinase A (PKA) was inhibited by extracellular applying KT5720 or intracellular administration of PKI. These results indicate that NE activates β1-AR and triggers HFS to induce a novel glutamatergic LTP of hypothalamic PVN NMCs via the postsynaptic PKA signaling pathway in vitro in rats.
6.Norepinephrine triggers glutamatergic long-term potentiation in hypothalamic paraventricular nucleus magnocellular neuroendocrine cells through postsynaptic ββ1-AR/PKA signaling pathway in vitro in rats
Jing-Ri JIN ; Zhao-Yi ZHANG ; Chun-Ping CHU ; Yu-Zi LI ; De-Lai QIU
The Korean Journal of Physiology and Pharmacology 2024;28(6):569-576
Norepinephrine (NE) modulates synaptic transmission and long-term plasticity through distinct subtype adrenergic receptor (AR)-mediated-intracellular signaling cascades. However, the role of NE modulates glutamatergic long-term potentiation (LTP) in the hypothalamic paraventricular nucleus (PVN) magnocellular neuroendocrine cells (MNCs) is unclear. We here investigate the effect of NE on high frequency stimulation (HFS)-induced glutamatergic LTP in rat hypothalamic PVN MNCs in vitro, by whole-cell patch-clamp recording, biocytin staining and pharmacological methods. Delivery of HFS induced glutamatergic LTP with a decrease in N2/N1 ratio in the PVN MNCs, which was enhanced by application of NE (100 nM).HFS-induced LTP was abolished by the blockade of N-methyl-D-aspartate receptors (NMDAR) with D-APV, but it was rescued by the application of NE. NE failed to rescue HFS-induced LTP of MNCs in the presence of a selective β1-AR antagonist, CGP 20712. However, application of β1-AR agonist, dobutamine HCl rescued HFS-induced LTP of MNCs in the absence of NMDAR activity. In the absence of NMDAR activity, NE failed to rescue HFS-induced MNC LTP when protein kinase A (PKA) was inhibited by extracellular applying KT5720 or intracellular administration of PKI. These results indicate that NE activates β1-AR and triggers HFS to induce a novel glutamatergic LTP of hypothalamic PVN NMCs via the postsynaptic PKA signaling pathway in vitro in rats.
7.Norepinephrine triggers glutamatergic long-term potentiation in hypothalamic paraventricular nucleus magnocellular neuroendocrine cells through postsynaptic ββ1-AR/PKA signaling pathway in vitro in rats
Jing-Ri JIN ; Zhao-Yi ZHANG ; Chun-Ping CHU ; Yu-Zi LI ; De-Lai QIU
The Korean Journal of Physiology and Pharmacology 2024;28(6):569-576
Norepinephrine (NE) modulates synaptic transmission and long-term plasticity through distinct subtype adrenergic receptor (AR)-mediated-intracellular signaling cascades. However, the role of NE modulates glutamatergic long-term potentiation (LTP) in the hypothalamic paraventricular nucleus (PVN) magnocellular neuroendocrine cells (MNCs) is unclear. We here investigate the effect of NE on high frequency stimulation (HFS)-induced glutamatergic LTP in rat hypothalamic PVN MNCs in vitro, by whole-cell patch-clamp recording, biocytin staining and pharmacological methods. Delivery of HFS induced glutamatergic LTP with a decrease in N2/N1 ratio in the PVN MNCs, which was enhanced by application of NE (100 nM).HFS-induced LTP was abolished by the blockade of N-methyl-D-aspartate receptors (NMDAR) with D-APV, but it was rescued by the application of NE. NE failed to rescue HFS-induced LTP of MNCs in the presence of a selective β1-AR antagonist, CGP 20712. However, application of β1-AR agonist, dobutamine HCl rescued HFS-induced LTP of MNCs in the absence of NMDAR activity. In the absence of NMDAR activity, NE failed to rescue HFS-induced MNC LTP when protein kinase A (PKA) was inhibited by extracellular applying KT5720 or intracellular administration of PKI. These results indicate that NE activates β1-AR and triggers HFS to induce a novel glutamatergic LTP of hypothalamic PVN NMCs via the postsynaptic PKA signaling pathway in vitro in rats.
8.Development of fluorine-substituted NH2-biphenyl-diarylpyrimidines as highly potent non-nucleoside reverse transcriptase inhibitors: Boosting the safety and metabolic stability.
Xin JIN ; Shuai WANG ; Limin ZHAO ; Wenjuan HUANG ; Yinxiang ZHANG ; Christophe PANNECOUQUE ; Erik DE CLERCQ ; Ge MENG ; Huri PIAO ; Fener CHEN
Acta Pharmaceutica Sinica B 2023;13(3):1192-1203
Our recent studies for nonnucleoside reverse transcriptase inhibitors identified a highly potent compound JK-4b against WT HIV-1 (EC50 = 1.0 nmol/L), but the poor metabolic stability in human liver microsomes (t 1/2 = 14.6 min) and insufficient selectivity (SI = 2059) with high cytotoxicity (CC50 = 2.08 μmol/L) remained major issues associated with JK-4b. The present efforts were devoted to the introduction of fluorine into the biphenyl ring of JK-4b, leading to the discovery of a novel series of fluorine-substituted NH2-biphenyl-diarylpyrimidines with noticeable inhibitory activity toward WT HIV-1 strain (EC50 = 1.8-349 nmol/L). The best compound 5t in this collection (EC50 = 1.8 nmol/L, CC50 = 117 μmol/L) was 32-fold in selectivity (SI = 66,443) compared to JK-4b and showed remarkable potency toward clinically multiple mutant strains, such as L100I, K103N, E138K, and Y181C. The metabolic stability of 5t was also significantly improved (t 1/2 = 74.52 min), approximately 5-fold higher than JK-4b in human liver microsomes (t 1/2 = 14.6 min). Also, 5t possessed good stability in both human and monkey plasma. No significant in vitro inhibition effect toward CYP enzyme and hERG was observed. The single-dose acute toxicity test did not induce mice death or obvious pathological damage. These findings pave the way for further development of 5t as a drug candidate.
9.Research advances in peptide‒drug conjugates.
Liming GONG ; Heming ZHAO ; Yanhong LIU ; Hao WU ; Chao LIU ; Shuangyan CHANG ; Liqing CHEN ; Mingji JIN ; Qiming WANG ; Zhonggao GAO ; Wei HUANG
Acta Pharmaceutica Sinica B 2023;13(9):3659-3677
Peptide‒drug conjugates (PDCs) are drug delivery systems consisting of a drug covalently coupled to a multifunctional peptide via a cleavable linker. As an emerging prodrug strategy, PDCs not only preserve the function and bioactivity of the peptides but also release the drugs responsively with the cleavable property of the linkers. Given the ability to significantly improve the circulation stability and targeting of drugs in vivo and reduce the toxic side effects of drugs, PDCs have already been extensively applied in drug delivery. Herein, we review the types and mechanisms of peptides, linkers and drugs used to construct PDCs, and summarize the clinical applications and challenges of PDC drugs.
10.Structure-based design of novel heterocycle-substituted ATDP analogs as non-nucleoside reverse transcriptase inhibitors with improved selectivity and solubility.
Li-Min ZHAO ; Christophe PANNECOUQUE ; Erik De CLERCQ ; Shuai WANG ; Fen-Er CHEN
Acta Pharmaceutica Sinica B 2023;13(12):4906-4917
Following on our recently developed biphenyl-ATDP non-nucleoside reverse transcriptase inhibitor ZLM-66 (SI = 2019.80, S = 1.9 μg/mL), a series of novel heterocycle-substituted ATDP derivatives with significantly improved selectivity and solubility were identified by replacement of the biphenyl moiety of ZLM-66 with heterocyclic group with lower lipophilicity. Evidently, the representative analog 7w in this series exhibited dramatically enhanced selectivity and solubility (SI = 12,497.73, S = 4472 μg/mL) in comparison with ZLM-66 (SI = 2019.80, S = 1.9 μg/mL). This new NNRTI conferred low nanomolar inhibition of wild-type HIV-1 strain and tested mutant strains (K103N, L100I, Y181C, E138K, and K103N + Y181C). The analog also demonstrated favorable safety and pharmacokinetic profiles, as evidenced by its insensitivity to CYP and hERG, lack of mortality and pathological damage, and good oral bioavailability in rats (F = 27.1%). Further development of 7w for HIV therapy will be facilitated by this valuable information.

Result Analysis
Print
Save
E-mail