1.Application of Yttrium-90 microsphere selective internal radiation therapy in downstaging and conversion of hepatocellular carcinoma: a case report
Ziwei LIANG ; Tiantian ZHANG ; Yong LIAO ; Xin HUANG ; Bin LIANG ; Zhongbin HANG ; Yan ZHANG ; Lin ZHANG ; Xiaobin FENG ; Li HUO
Chinese Journal of Clinical Medicine 2025;32(1):41-45
This case report describes a 68-year-old male patient diagnosed with primary hepatocellular carcinoma (HCC). After receiving Yttrium-90 microsphere selective internal radiation therapy (90Y-SIRT), the tumor significantly reduced in size, and tumor markers alpha fetoprotein (AFP) and abnormal prothrombin (PIVKA-Ⅱ) decreased. Postoperative pathological results showed minimal residual tumor cells, indicating that 90Y-SIRT has good efficacy and safety in downstaging and conversion of HCC, thereby facilitating subsequent surgical resection.
2.Exploring the Relationship Between Liver and Executive Function Decline Based on "the Liver Governs the Designing of Strategy"
Lei HUO ; Yanan DENG ; Jinchai DENG ; Yan ZHANG ; Xueyuan DU ; Xianghong ZHAN
Journal of Traditional Chinese Medicine 2025;66(2):201-204
The concept of "spirit" in traditional Chinese medicine (TCM) aligns closely with "the liver governs the designing of strategy". By exploring the relationship between the liver and executive function decline, it is proposed that prolonged liver constraint leads to indecisiveness in strategy designing, which is the initiating factor for executive function decline; liver blood deficiency causes difficulties in executing strategy, which forms an essential foundation for the progression of executive function decline; obstruction in the "liver-du mai-brain" pathway leads to unclear strategy designing, which accelerates executive function decline. This relationship is examined from the perspectives of TCM, modern medicine, and cognitive psychology, aiming to provide insights into addressing executive function decline through treatments focused on the liver.
3.Application and prospects of mobile health applications in the health management of organ transplant recipients
Ru JI ; Wei YAN ; Zhixia LI ; Zhiping HUANG ; Dianying ZHANG ; Jianxiong CHEN ; Feng HUO
Organ Transplantation 2025;16(3):474-481
With the rapid development of mobile internet technology, mobile health application (mHealth APP) are increasingly widely used in the field of health management and have been proven to play an important role in the management of chronic diseases. Solid organ transplant recipients face complex health management needs after surgery, including postoperative follow-up, medication management, prevention and treatment of complications and comorbidities, and lifestyle adjustment. mHealth APP can provide solid organ transplant recipients with convenient self-management tools. Although some progress has been made in this field, there are still many challenges, such as insufficient user experience, technological dependence, and data security risks. Therefore, this article discusses the development process, main functions and current application status of mHealth APP, and analyzes its advantages in improving the self-management ability of solid organ transplant recipients, promoting doctor-patient communication and reducing the incidence of complications. At the same time, based on the practical experience of author’s team in developing the “TransMate” mHealth APP, we propose the directions that mHealth APPs should focus on in the future, in order to provide more effective support and services for the health management of solid organ transplant recipients.
4.A Case Report of Pachydermoperiostosis by Multidisciplinary Diagnosis and Treatment
Jie ZHANG ; Yan ZHANG ; Li HUO ; Ke LYU ; Tao WANG ; Ze'nan XIA ; Xiao LONG ; Kexin XU ; Nan WU ; Bo YANG ; Weibo XIA ; Rongrong HU ; Limeng CHEN ; Ji LI ; Xia HONG ; Yan ZHANG ; Yagang ZUO
JOURNAL OF RARE DISEASES 2025;4(1):75-82
A 20-year-old male patient presented to the Department of Dermatology of Peking Union Medical College Hospital with complaints of an 8-year history of facial scarring, swelling of the lower limbs, and a 4-year history of scalp thickening. Physical examination showed thickening furrowing wrinkling of the skin on the face and behind the ears, ciliary body hirsutism, blepharoptosis, and cutis verticis gyrate. Both lower limbs were swollen, especially the knees and ankles. The skin of the palms and soles of the feet was keratinized and thickened. Laboratory examination using bone and joint X-ray showed periostosis of the proximal middle phalanges and metacarpals of both hands, distal ulna and radius, tibia and fibula, distal femurs, and metatarsals.Genetic testing revealed two variants in
5.Production of GTKO pigs and kidney xenotransplantation from pigs to rhesus macaques
Yan WANG ; Yue CHANG ; Chang YANG ; Taiyun WEI ; Xiaoying HUO ; Bowei CHEN ; Jiaoxiang WANG ; Heng ZHAO ; Jianxiong GUO ; Hongfang ZHAO ; Xiong ZHANG ; Feiyan ZHU ; Wenmin CHENG ; Hongye ZHAO ; Kaixiang XU ; Ameen Jamal MUHAMMAD ; Zhendi WANG ; Hongjiang WEI
Organ Transplantation 2025;16(4):526-537
Objective To explore the construction of α-1,3-galactosyltransferase (GGTA1) gene-knockout (GTKO) Diannan miniature pigs and the kidney xenotransplantation from pigs to rhesus macaques, and to assess the effectiveness of GTKO pigs. Methods The GTKO Diannan miniature pigs were constructed using the CRISPR/Cas9 gene-editing system and somatic cell cloning technology. The phenotype of GTKO pigs was verified through polymerase chain reaction, Sanger sequencing and immunofluorescence staining. Flow cytometry was used to detect antigen-antibody (IgM) binding and complement-dependent cytotoxicity. Kidney xenotransplantation was performed from GTKO pigs to rhesus macaques. The humoral immunity, cellular immunity, coagulation and physiological indicators of the recipient monkeys were monitored. The function and pathological changes of the transplanted kidneys were analyzed using ultrasonography, hematoxylin-eosin staining, immunohistochemical staining and immunofluorescence staining. Results Single-guide RNA (sgRNA) targeting exon 4 of the GGTA1 gene in Diannan miniature pigs was designed. The pGL3-GGTA1-sgRNA1-GFP vector was transfected into fetal fibroblasts of Diannan miniature pigs. After puromycin selection, two cell clones, C59# and C89#, were identified as GGTA1 gene-knockout clones. These clones were expanded to form cell lines, which were used as donor cells for somatic cell nuclear transfer. The reconstructed embryos were transferred into the oviducts of trihybrid surrogate sows, resulting in 13 fetal pigs. Among them, fetuses F04 and F11 exhibited biallelic mutations in the GGTA1 gene, and F04 had a normal karyotype. Using this GTKO fetal pig for recloning and transferring the reconstructed embryos into the oviducts of trihybrid surrogate sows, seven surviving piglets were obtained, all of which did not express α-Gal epitope. The binding of IgM from the serum of rhesus monkey 20# to GTKO pig PBMC was reduced, and the survival rate of GTKO pig PBMC in the complement-dependent cytotoxicity assay was higher than that of wild-type pig. GTKO pig kidneys were harvested and perfused until completely white. After the left kidney of the recipient monkey was removed, the pig kidney was heterotopically transplanted. Following vascular anastomosis and blood flow restoration, the pig kidney rapidly turned pink without hyperacute rejection (HAR). Urine appeared in the ureter 6 minutes later, indicating successful kidney transplantation. The right kidney of the recipient was then removed. Seven days after transplantation, the transplanted kidney had good blood flow, the recipient monkey's serum creatinine level was stable, and serum potassium and cystatin C levels were effectively controlled, although they increased 10 days after transplantation. Seven days after transplantation, the levels of white blood cells, lymphocytes, monocytes and eosinophils in the recipient monkey increased, while platelet count and fibrinogen levels decreased. The activated partial thromboplastin time, thrombin time and prothrombin time remained relatively stable but later showed an upward trend. The recipient monkey survived for 10 days. At autopsy, the transplanted kidney was found to be congested, swollen and necrotic, with a small amount of IgG deposition in the renal tissue, and a large amount of IgM, complement C3c and C4d deposition, as well as CD68+ macrophage infiltration. Conclusions The kidneys of GTKO Diannan miniature pigs may maintain normal renal function for a certain period in rhesus macaques and effectively overcome HAR, confirming the effectiveness of GTKO pigs for xenotransplantation.
6.Association between polymorphisms in the glucose metabolism and lipid regulation genes with metabolic abnormalities in childhood obesity
Chinese Journal of School Health 2025;46(6):888-893
Objective:
To explore the association between CDKAL1 rs35261542, FAIM2 rs 3205718, and VGLL4 rs 2574704 polymorphisms with childhood obesity and related metabolic phenotypes to provide evidence for personalized prevention and management strategies.
Methods:
Based on the 2023 Long term Nutritional Health Effects of Early Childhood Nutrition Package Intervention project, the study enrolled 1 078 children aged 5-7 years from four counties in Henan (Songxian and Ruyang countries) and Guizhou (Guiding and Fuquan countries) provinces. Using BMI Z scores, 87 overweight and obese(OVOB) children were selected and matched by sex, age, and BMI Z score with 117 normal weight controls. Participants were further stratified into four metabolic phenotype groups: metabolically healthy normal weight (MHNW, n =51), metabolically unhealthy normal weight (MUNW, n =66), metabolically healthy obesity (MHO, n =31) and metabolically unhealthy obesity (MUO, n =56) based on four conventional cardiometabolic risk factor (CR) criteria. Data were collected through questionnaires, anthropometric measurements, serum biochemical tests, and KASP genotyping. The distribution of three genetic polymorphisms ( CDKAL1 rs35261542, FAIM2 rs3205718, VGLL4 rs 2574704) across metabolic subgroups was analyzed. Multivariate Logistic regression models assessed associations between these polymorphisms and obesity/metabolic phenotypes.
Results:
Multivariate Logistic regression analysis showed that Homozygous mutant AA genotype of CDKAL1 rs 35261542 was positively associated with OVOB( OR =3.63), MHO ( OR =11.04), MUO ( OR = 4.88 ) ( P <0.05). Homozygous TT genotype of FAIM2 rs 3205718 increased OVOB risk ( OR =4.44, P <0.05) but showed no association with metabolic phenotypes ( P >0.05). Homozygous mutant TT of VGLL4 rs 2574704 reduced the risks of MHO and MUO ( OR = 0.30, 0.24, P <0.05). Cumulative genetic effects analysis demonstrated carriers of 1 or 2 risk genotypes of rs 35261542 and rs 3205718 had progressively higher OVOB risk ( OR =2.53, 20.79), and the combination of rs 35261542 and rs 2574704 increased risks for both MHO ( OR =8.50) and MUO ( OR =5.00) ( P <0.05).
Conclusions
The AA genotype of rs 35261542 ( CDKAL1 ) positively correlates with childhood obesity and metabolic abnormalities. The TT genotype of rs 3205718 ( FAIM 2) increases obesity risk but not metabolic phenotypes. The TT genotype of rs 2574704 ( VGLL 4) shows protective effects against metabolic dysfunction. Risk genotypes exhibit dosedependent cumulative effects on obesity and metabolic outcomes.
7.Evidence-based study on postoperative chemotherapy guidelines/consensuses for ovarian epithelial tumor
Xiandan LUO ; Yanli LU ; Yihang WU ; Yanxiang GUO ; Xiaoyi YAN ; Yongchao HUO ; Hui YAN ; Zhenjiang YANG ; Hongliang ZHANG
China Pharmacy 2025;36(18):2328-2333
OBJECTIVE To systematically evaluate the methodological quality of the postoperative chemotherapy guidelines/ consensuses for ovarian epithelial tumor. METHODS A search was conducted across databases including PubMed, Embase, Web of Science, CBM, VIP, Chinese Medical Journal Data, Wanfang Data, and CNKI, as well as the official websites of GIN, NICE, Medlive, AHRQ, CSCO, ASCO, and NCCN. The search period was from the establishment of the databases/websites to March 10, 2025. The quality of the included guidelines/consensus was evaluated by using the AGREE-Ⅱ tool. RESULTS A total of 16 guidelines/consensuses were included. The domain scores of AGREE-Ⅱ evaluation were as follows: scope and purpose of 85.07%, participants of 47.92%, rigor of development of 57.49%, clarity of presentation of 88.02%, applicability of 8.20%, and independence of 53.39%. Among them, 14 were recommended at grade B and 2 were recommended at grade C. The subgroup analysis by different countries/regions and different types of studies showed that the scores for participants, rigor of development, and independence of the guidelines/consensuses in China were significantly lower than foreign countries (P<0.05); the scores for participants and rigor of development of the guidelines were significantly higher than consensuses (P<0.05). The guideline/ consensus recommendation results indicated that grade B guidelines/consensus recommend platinum-based combination chemotherapy as the preferred adjuvant chemotherapy regimen for stage Ⅰ high-grade serous carcinoma patients;platinum-based combination chemotherapy±bevacizumab was recommended as the preferred adjuvant chemotherapy regimen for stage Ⅱ-Ⅳ high- grade serous carcinoma patients and for platinum-sensitive recurrent high-grade serous carcinoma patients; non-platinum single- agent chemotherapy±bevacizumab was recommended as the preferred chemotherapy regimen for platinum-resistant recurrent high- grade serous carcinoma patients. CONCLUSIONS The overall quality of postoperative chemotherapy guidelines/consensuses for ovarian epithelial tumor is not high. The methodological quality of guidelines/consensuses in China is still lagging behind that of foreign countries. The recommendations differ from those in foreign countries. It is recommended to improve the aspects of participants, rigor of development, and independence, to recommend treatment plans based on the different stages of ovarian cancer, and develop guidelines/consensuses that align with China’s national conditions.
8.Molecular Mechanisms Underlying Sleep Deprivation-induced Acceleration of Alzheimer’s Disease Pathology
Si-Ru YAN ; Ming-Yang CAI ; Ya-Xuan SUN ; Qing HUO ; Xue-Ling DAI
Progress in Biochemistry and Biophysics 2025;52(10):2474-2485
Sleep deprivation (SD) has emerged as a significant modifiable risk factor for Alzheimer’s disease (AD), with mounting evidence demonstrating its multifaceted role in accelerating AD pathogenesis through diverse molecular, cellular, and systemic mechanisms. SD is refined within the broader spectrum of sleep-wake and circadian disruption, emphasizing that both acute total sleep loss and chronic sleep restriction destabilize the homeostatic and circadian processes governing glymphatic clearance of neurotoxic proteins. During normal sleep, concentrations of interstitial Aβ and tau fall as cerebrospinal fluid oscillations flush extracellular waste; SD abolishes this rhythm, causing overnight rises in soluble Aβ and tau species in rodent hippocampus and human CSF. Orexinergic neurons sustain arousal, and become hyperactive under SD, further delaying sleep onset and amplifying Aβ production. At the molecular level, SD disrupts Aβ homeostasis through multiple converging pathways, including enhanced production via beta-site APP cleaving enzyme 1 (BACE1) upregulation, coupled with impaired clearance mechanisms involving the glymphatic system dysfunction and reduced Aβ-degrading enzymes (neprilysin and insulin-degrading enzyme). Cellular and histological analyses revealed that these proteinopathies are significantly exacerbated by SD-induced neuroinflammatory cascades characterized by microglial overactivation, astrocyte reactivity, and sustained elevation of pro-inflammatory cytokines (IL-1β, TNF-α, IL-6) through NF‑κB signaling and NLRP3 inflammasome activation, creating a self-perpetuating cycle of neurotoxicity. The synaptic and neuronal consequences of chronic SD are particularly profound and potentially irreversible, featuring reduced expression of critical synaptic markers (PSD95, synaptophysin), impaired long-term potentiation (LTP), dendritic spine loss, and diminished neurotrophic support, especially brain-derived neurotrophic factor (BDNF) depletion, which collectively contribute to progressive cognitive decline and memory deficits. Mechanistic investigations identify three core pathways through which SD exerts its neurodegenerative effects: circadian rhythm disruption via BMAL1 suppression, orexin system hyperactivity leading to sustained wakefulness and metabolic stress, and oxidative stress accumulation through mitochondrial dysfunction and reactive oxygen species overproduction. The review critically evaluates promising therapeutic interventions including pharmacological approaches (melatonin, dual orexin receptor antagonists), metabolic strategies (ketogenic diets, and Mediterranean diets rich in omega-3 fatty acids), lifestyle modifications (targeted exercise regimens, cognitive behavioral therapy for insomnia), and emerging technologies (non-invasive photobiomodulation, transcranial magnetic stimulation). Current research limitations include insufficient understanding of dose-response relationships between SD duration/intensity and AD pathology progression, lack of long-term longitudinal clinical data in genetically vulnerable populations (particularly APOE ε4 carriers and those with familial AD mutations), the absence of standardized SD protocols across experimental models that accurately mimic human chronic sleep restriction patterns, and limited investigation of sex differences in SD-induced AD risk. The accumulated evidence underscores the importance of addressing sleep disturbances as part of multimodal AD prevention strategies and highlights the urgent need for clinical trials evaluating sleep-focused interventions in at-risk populations. The review proposes future directions focused on translating mechanistic insights into precision medicine approaches, emphasizing the need for biomarkers to identify SD-vulnerable individuals, chronotherapeutic strategies aligned with circadian biology, and multi-omics integration across sleep, proteostasis and immune profiles may delineate precision-medicine strategies for at-risk populations. By systematically examining these critical connections, this analysis positions sleep quality optimization as a viable strategy for AD prevention and early intervention while providing a comprehensive roadmap for future mechanistic and interventional research in this rapidly evolving field.
9.Analysis of clinical characteristics and influential factors of drug-induced liver injury in children caused by intravenous azithromycin
Wanhui LI ; Xiaoqian LYU ; Dan SU ; Baofeng HUO ; Hejun CHEN ; Ping YAN
China Pharmacy 2025;36(20):2566-2570
OBJECTIVE To analyze the clinical characteristics and influential factors of drug-induced liver injury (DILI) in children caused by intravenous azithromycin. METHODS Clinical data of 157 DILI pediatric cases caused by intravenous azithromycin, reported by the Hengshui Adverse Drug Reaction Monitoring Center from January 2015 to January 2025, were collected as the observation group. Clinical data of pediatric patients who received intravenous azithromycin but did not develop DILI during the same period at Hengshui People’s Hospital were collected in a 1∶1 ratio to serve as the control group. The clinical classification, severity and prognosis of DILI in pediatric patients from the observation group were analyzed. Univariate and multivariate Logistic regression analyses were used to screen the independent risk factors for DILI in children caused by intravenous azithromycin. RESULTS Among 157 DILI cases, 92 cases (58.60%) had hepatocellular injury-type, 51 cases (32.48%) had cholestatic-type, and 14 cases (8.92%) had mixed-type. DILI severity was grade 1 in 117 cases (74.52%), grade 2 in 33 cases (21.02%), and grade 3 in 7 cases (4.46%). Liver function had all recovered after stopping medication and symptomatic treatment. Combined with acetaminophen [OR=3.769, 95%CI (1.615, 8.235), P=0.021], daily dose of azithromycin>10 mg/kg [OR= 2.237, 95%CI (1.075, 4.655), P=0.034] were independent risk factors for DILI in children caused by intravenous azithromycin. CONCLUSIONS Hepatocellular injury-type and cholestatic-type are relatively common in children with DILI caused by intravenous azithromycin, with mild severity being predominant and showing a favorable prognosis. Combination with acetaminophen and daily dose>10 mg/kg are independent risk factors for azithromycin-induced DILI in children.
10.The lysine methyltransferase SMYD2 facilitates neointimal hyperplasia by regulating the HDAC3-SRF axis.
Xiaoxuan ZHONG ; Xiang WEI ; Yan XU ; Xuehai ZHU ; Bo HUO ; Xian GUO ; Gaoke FENG ; Zihao ZHANG ; Xin FENG ; Zemin FANG ; Yuxuan LUO ; Xin YI ; Ding-Sheng JIANG
Acta Pharmaceutica Sinica B 2024;14(2):712-728
Coronary restenosis is an important cause of poor long-term prognosis in patients with coronary heart disease. Here, we show that lysine methyltransferase SMYD2 expression in the nucleus is significantly elevated in serum- and PDGF-BB-induced vascular smooth muscle cells (VSMCs), and in tissues of carotid artery injury-induced neointimal hyperplasia. Smyd2 overexpression in VSMCs (Smyd2-vTg) facilitates, but treatment with its specific inhibitor LLY-507 or SMYD2 knockdown significantly inhibits VSMC phenotypic switching and carotid artery injury-induced neointima formation in mice. Transcriptome sequencing revealed that SMYD2 knockdown represses the expression of serum response factor (SRF) target genes and that SRF overexpression largely reverses the inhibitory effect of SMYD2 knockdown on VSMC proliferation. HDAC3 directly interacts with and deacetylates SRF, which enhances SRF transcriptional activity in VSMCs. Moreover, SMYD2 promotes HDAC3 expression via tri-methylation of H3K36 at its promoter. RGFP966, a specific inhibitor of HDAC3, not only counteracts the pro-proliferation effect of SMYD2 overexpression on VSMCs, but also inhibits carotid artery injury-induced neointima formation in mice. HDAC3 partially abolishes the inhibitory effect of SMYD2 knockdown on VSMC proliferation in a deacetylase activity-dependent manner. Our results reveal that the SMYD2-HDAC3-SRF axis constitutes a novel and critical epigenetic mechanism that regulates VSMC phenotypic switching and neointimal hyperplasia.


Result Analysis
Print
Save
E-mail