1.Bioinformatics Reveals Mechanism of Xiezhuo Jiedu Precription in Treatment of Ulcerative Colitis by Regulating Autophagy
Xin KANG ; Chaodi SUN ; Jianping LIU ; Jie REN ; Mingmin DU ; Yuan ZHAO ; Xiaomeng LANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):166-173
		                        		
		                        			
		                        			ObjectiveTo explore the potential mechanism of Xiezhuo Jiedu prescription in regulating autophagy in the treatment of ulcerative colitis (UC) by bioinformatics and animal experiments. MethodsThe differentially expressed genes (DEGs) in the colonic mucosal tissue of UC patients was obtained from the Gene Expression Omnibus (GEO), and those overlapped with autophagy genes were obtained as the differentially expressed autophagy-related genes (DEARGs). DEARGs were imported into Metascape and STRING, respectively, for gene ontology/Kyoto Encyclopedia of Genes and Genomics (GO/KEGG) enrichment analysis and protein-protein interaction (PPI) analysis. Finally, 15 key DEARGs were obtained. The core DEARGs were obtained by least absolute shrinkage and selection operator (LASSO) regression and receiver operating characteristic curve (ROC) analysis. The CIBERSORT deconvolution algorithm was used to analyze the immunoinfiltration of UC patients and the correlations between core DEARGs and immune cells. C57BL/6J mice were assigned into a normal group and a modeling group. The mouse model of UC was established by free drinking of 2.5% dextran sulfate sodium. The modeled mice were assigned into low-, medium-, and high-dose Xiezhuo Jiedu prescription and mesalazine groups according to the random number table method and administrated with corresponding agents by gavage for 7 days. The colonic mucosal morphology was observed by hematoxylin-eosin staining. The protein and mRNA levels of cysteinyl aspartate-specific proteinase 1 (Caspase-1), cathepsin B (CTSB), C-C motif chemokine-2 (CCL2), CXC motif receptor 4 (CXCR4), and hypoxia-inducing factor-1α (HIF-1α) in the colon tissue were determined by Western blot and real-time fluorescence quantitative polymerase chain reaction, respectively. ResultsThe dataset GSE87466 was screened from GEO and interlaced with autophagy genes. After PPI analysis, LASSO regression, and ROC analysis, the core DEARGs (Caspase-1, CCL2, CTSB, and CXCR4) were obtained. The results of immunoinfiltration analysis showed that the counts of NK cells, M0 macrophages, M1 macrophages, and dendritic cells in the colonic mucosal tissue of UC patients had significant differences, and core DEARGs had significant correlations with these immune cells. This result, combined with the prediction results of network pharmacology, suggested that the HIF-1α signaling pathway may play a key role in the regulation of UC by Xiezhuo Jiedu prescription. The animal experiments showed that Xiezhuo Jiedu prescription significantly alleviated colonic mucosal inflammation in UC mice. Compared with the normal group, the model group showed up-regulated protein and mRNA levels of caspase-1, CCL2, CTSB, CXCR4, and HIF-1α, which were down-regulated after treatment with Xiezhuo Jiedu prescription or mesalazine. ConclusionCaspase-1, CCL2, CTSB, and CXCR4 are autophagy genes that are closely related to the onset of UC. Xiezhuo Jiedu prescription can down-regulate the expression of core autophagy genes to alleviate the inflammation in the colonic mucosa of mice. 
		                        		
		                        		
		                        		
		                        	
2.Effects of Xiaozhong Zhitong Mixture (消肿止痛合剂) on Angiogenesis and the Dll4/Notch1 Signaling Pathway in Wound Tissue of Diabetic Foot Ulcer Model Rats
Xiao HAN ; Tao LIU ; Yuan SONG ; Jie CHEN ; Jiaxuan SHEN ; Jing QIAO ; Hengjie WANG ; Lewen WU ; Yazhou ZHAO
Journal of Traditional Chinese Medicine 2025;66(16):1695-1703
		                        		
		                        			
		                        			ObjectiveTo investigate the potential machanism of Xiaozhong Zhitong Mixture (消肿止痛合剂, XZM) in the treatment of diabetes foot ulcer (DFU). MethodsFifty SD rats were randomly divided into blank group, model group, XZM group, inhibitor group, XZM plus inhibitor group (combination group), with 10 rats in each group. Except for the blank group, rats were fed with high-sugar, high-fat, high-cholesterol diet, intraperitoneally injected with streptozotocin, and subjected to skin defect to establish DFU model. After successful modeling, the XZM group and the combination group were given 1 ml/(100 g·d)of XZM by gavage, while the blank group, model group, and inhibitor group were all given an equal volume of 0.9% sodium chloride injection by gavage. Thirty minutes later, the inhibitor group and the combination group were intraperitoneally injected with 5 mg/(kg·d) of Notch1 inhibitor DAPT. All groups were treated once a day. After 14 days of administration, the skin tissue from the dorsal foot of the blank group rats and wound tissue from the other groups were collected. The pathological changes of granulation tissue in the wound were detected using hematoxylin eosin (HE) staining. The microvascular density (MVD) in wounds was detected through immunohistochemical staining. Real time fluorescence quantitative polymerase chain reaction (RT-PCR) and western blotting were used to detect the mRNA and protein levels of Notch1 homolog (Notch1), Delta-like ligand 4 (Dll4), Delta-like ligand 4 (VEGF), and angiopoietin 2 (Ang-2), respectively. ResultsHistological results showed that the epidermal structure in the dorsal foot skin tissue of the rats in the blank group was intact. In the wound tissue of the model group, the epidermis exhibited excessive keratinization, vacuolar cytoplasm, and a large number of inflammatory cells infiltrating the tissue, while in the XZM group, a large amount of scab formation was observed in the epidermis, with no significant inflammatory cell infiltration and a noticeable increase in fibroblasts. In the combination group and the inhibitor group, partial epidermal scab formation was observed in the wound tissue with a small amount of inflammatory cell infiltration. Compared to those in the blank group, the MVD in the wound tissue increased in the model group, as well as the mRNA expression and protein levels of Notch1 and Dll4, while VEGFA and Ang-2 mRNA expression and protein levels significantly decreased (P<0.05 or P<0.01). Compared to those in the model group, the MVD in the wound tissue of all medication groups significantly increased, and the mRNA and protein levels of Notch1 and Dll4 decreased, while VEGFA and Ang-2 mRNA expression and protein levels increased (P<0.05 or P<0.01). Compared to the XZM group, the inhibitor group and the combination group showed decreased MVD in wound tissue, increased Notch1 and Dll4 mRNA and protein levels, and decreased expression of VEGFA and Ang-2 mRNA and proteins (P<0.05 or P<0.01). ConclusionXZM can effectively promote wound healing in DFU rats, and its mechanism of action may be related to the inhibition of Dll4/Notch1 signaling pathway in the wound tissue, therey promoting angiogenesis. 
		                        		
		                        		
		                        		
		                        	
3.Annual report on transcatheter left atrial appendage closure in 2024
Yuan BAI ; Xiaochun ZHANG ; Jie ZENG ; Yongjian WU ; Daxin ZHOU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(06):746-751
		                        		
		                        			
		                        			After two decades of development, transcatheter left atrial appendage closure has emerged as a safe and effective intervention for stroke prevention in patients with atrial fibrillation. In 2024, significant advancements were made in the field of left atrial appendage closure in terms of evidence-based medicine, device research and development, and guideline consensus. The annual report on transcatheter left atrial appendage closure systematically reviews global academic progress in 2024, encompassing newly published clinical evidence, recently developed occlusion devices, and updated international guidelines/consensus statements. In the future, the development direction of transcatheter left atrial appendage closure mainly includes expanding surgical indications, optimizing imaging assistance technology, improving closure device design, and exploring individualized strategies for postoperative antithrombotic therapy.
		                        		
		                        		
		                        		
		                        	
4.Effect of Xuebijing injection on tumor necrosis factor-α expression in rats with endotoxin-induced uveitis
Zhongxia DU ; Jie WANG ; Ruidong LI ; Yuan YANG
International Eye Science 2025;25(10):1560-1565
		                        		
		                        			
		                        			 AIM: To evaluate the expression of tumor necrosis factor-α(TNF-α)in the iris and ciliary body of Wistar rats in the endotoxin-induced uveitis(EIU), and the effect of Xuebijing injection on its expression.METHODS:A total of 65 Wistar rats were randomly divided into three groups: Group A(normal saline, n=5), Group B(normal saline+endotoxin-injected, n=30), and Group C(Xuebijing+endotoxin-injected, n=30). The EIU model was induced in Wistar rats of the groups B and C by injecting LPS into the plantar surfaces of the hind feet, and normal saline(15 mL/kg)or Xuebijing(15 mL/kg)were intraperitoneally administered 30 min before LPS administration. The rats of the groups B and C were further divided into 6 subgroups after LPS injection, including 6, 12, 18, 24, 48, and 72 h subgroups, with 5 rats in each group. Furthermore, the intraocular inflammation of the rats was observed at each time above, the number of infiltrating cells in the aqueous humor was counted, and the pathological changes were observed in the iris and ciliary body of rats using hematoxylin and eosin(HE)staining. TNF-α expression in iris and ciliary tissue at different postoperative time points was evaluated using immunohistochemistry.RESULTS: Clinical observations indicated no signs of uveitis in the group A, signs of uveitis were observed in the group B. Both iris symptoms and damage were significantly reduced in the group C compared to the group B(P<0.01). Cell counts in the aqueous humor revealed no inflammatory cells in the group A, while the number of aqueous humor cells in the group C was significantly reduced compared to Group B(P<0.01). HE staining revealed no cellular infiltration in the group A. In the group B, some cellular infiltration was observed in the eyes at 6 h post-LPS exposure. The number of infiltrating cells increased over time, peaked at 24 h, and gradually declined thereafter. In the group C, cell infiltration was not obvious at 6 h, few at 24 h, and nearly disappeared by 48 h. Immunohistochemical staining showed higher TNF-α expression in the ciliary body and iris in the group B than in the group A(P<0.01). Compared to the group C, TNF-α expression in the group B was significantly upregulated following LPS injection(P<0.01).CONCLUSION:TNF-α expression was elevated in EIU rats, and there was a positive correlation between its mean optical density ratio and inflammation degree. Moreover, Xuebijing injection could alleviate inflammation response through the reduction of TNF-α levels. 
		                        		
		                        		
		                        		
		                        	
5.Network Pharmacology and Experimental Verification Unraveled The Mechanism of Pachymic Acid in The Treatment of Neuroblastoma
Hang LIU ; Yu-Xin ZHU ; Si-Lin GUO ; Xin-Yun PAN ; Yuan-Jie XIE ; Si-Cong LIAO ; Xin-Wen DAI ; Ping SHEN ; Yu-Bo XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2376-2392
		                        		
		                        			
		                        			ObjectiveTraditional Chinese medicine (TCM) constitutes a valuable cultural heritage and an important source of antitumor compounds. Poria (Poria cocos (Schw.) Wolf), the dried sclerotium of a polyporaceae fungus, was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia. Traditionally recognized for its diuretic, spleen-tonifying, and sedative properties, modern pharmacological studies confirm that Poria exhibits antioxidant, anti-inflammatory, antibacterial, and antitumor activities. Pachymic acid (PA; a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid), isolated from Poria, is a principal bioactive constituent. Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms, though these remain incompletely characterized. Neuroblastoma (NB), a highly malignant pediatric extracranial solid tumor accounting for 15% of childhood cancer deaths, urgently requires safer therapeutics due to the limitations of current treatments. Although PA shows multi-mechanistic antitumor potential, its efficacy against NB remains uncharacterized. This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking, dynamic simulations, and in vitro assays, aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays. MethodsThis study employed network pharmacology to identify potential targets of PA in NB, followed by validation using molecular docking, molecular dynamics (MD) simulations, MM/PBSA free energy analysis, RT-qPCR and Western blot experiments. Network pharmacology analysis included target screening via TCMSP, GeneCards, DisGeNET, SwissTargetPrediction, SuperPred, and PharmMapper. Subsequently, potential targets were predicted by intersecting the results from these databases via Venn analysis. Following target prediction, topological analysis was performed to identify key targets using Cytoscape software. Molecular docking was conducted using AutoDock Vina, with the binding pocket defined based on crystal structures. MD simulations were performed for 100 ns using GROMACS, and RMSD, RMSF, SASA, and hydrogen bonding dynamics were analyzed. MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex. In vitro validation included RT-qPCR and Western blot, with GAPDH used as an internal control. ResultsThe CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability. GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress, vesicle lumen, and protein tyrosine kinase activity. KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT, MAPK, and Ras signaling pathways. Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1, EGFR, SRC, and HSP90AA1. RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1, EGFR, and SRC while increasing the HSP90AA1 mRNA and protein levels. ConclusionIt was suggested that PA may exert its anti-NB effects by inhibiting AKT1, EGFR, and SRC expression, potentially modulating the PI3K/AKT signaling pathway. These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB. 
		                        		
		                        		
		                        		
		                        	
6.Investigation of an outbreak of group A human G9P [8] rotavirus infectious diarrhea among adults in Chongqing
Yang WANG ; Yuan KONG ; Ning CHEN ; Lundi YANG ; Jiang LONG ; Qin LI ; Xiaoyang XU ; Wei ZHENG ; Hong WEI ; Jie LU ; Quanjie XIAO ; Yingying BA ; Wenxi WU ; Qian XU ; Ju YAN
Shanghai Journal of Preventive Medicine 2025;37(8):663-668
		                        		
		                        			
		                        			ObjectiveTo investigate and analyze an outbreak of rotavirus infectious diarrhea in a prison in Chongqing Municipality, to provide a basis for adult rotavirus surveillance and prevention, and to explore the public health problems in special settings. MethodsA retrospective survey was conducted to collect and analyze data on individual cases with diarrheal disease on-site. The clinical characteristics, as well as the temporal, spatial and geographical distribution patterns of the epidemic were described. Multi-pathogen detection tests were conducted both on diarrhea cases and environmental samples, with viral genotyping performed on positive samples. A case-control analysis was performed to identify the causes of the outbreak, and an SEIR model was adopted to predict the outbreak trend and evaluate the effectiveness of interventions. ResultsA total of 65 cases were found among the inmates, with an attack rate of 2.03%. The predominant clinical manifestations included diarrhea (89.23%), watery stool (73.85%), and dehydration (18.46%). The epidemic curve indicated a “human-to-human” transmission pattern, with an average incubation period of 5‒6 days. The attack rates among chefs in the main canteen (80.00%, 8/10) and caterers (28.33%, 17/60) were significantly higher than those of other inmates (P<0.05). Multi-pathogen polymerase chain reaction (PCR) testing detected positive for group A rotavirus, with the viral genotyping identified as G9P [8] strain. Factors such as unprotected "bare-handed" food distribution among cases with diarrhea (OR=9.512, 95%CI: 4.261‒21.234) and close contact with diarrhea cases (OR=3.656, 95%CI: 1.719‒7.778) were the possible cause of the outbreak. The SEIR model (r0=5, α=0.3, β1=0.08, β2=0.04) was constructed using prison inmates as susceptible population, aiming at fitting the initial transmission trend of the outbreak, and the epidemic rate declined rapidly after intervention measures were implemented (rt≈0). ConclusionThis rare rotavirus infection diarrhea outbreak among adults in confined settings suggests that the construction of public health prevention and control systems in prison may be overlooked. Cross infection during meal processing and distribution in the canteens of such settings is likely to be the cause of the outbreak. Given the potential neglect of public heath system construction in special settings, it is imperative to enhance the surveillance and monitoring of rotavirus and other intestinal multi-pathogens among adults, as well as the construction of public health prevention and control systems in these special settings. 
		                        		
		                        		
		                        		
		                        	
7.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
		                        		
		                        			
		                        			Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice. 
		                        		
		                        		
		                        		
		                        	
8.Hemin regulates mitochondrial pathway of oxidative stress in mouse chondrocytes
Guanghui HE ; Jie YUAN ; Yanqin KE ; Xiaoting QIU ; Xiaoling ZHANG
Chinese Journal of Tissue Engineering Research 2025;29(6):1183-1191
		                        		
		                        			
		                        			BACKGROUND:Studies have shown that mitochondrial oxidative stress has an important role in the development of knee osteoarthritis,and Hemin can regulate the expression of mitochondria-related proteins. OBJECTIVE:To study the regulatory effect of Hemin on oxidative stress in mouse chondrocytes and its interventional effect and mechanism in knee osteoarthritis. METHODS:(1)In vitro cell experiment:Primary chondrocytes from C57BL/6 mice were extracted and induced with 10 ng/mL interleukin-1β to construct an in vitro chondrocyte model of osteoarthritis.The optimal concentration of Hemin(0,1,10,20,40,80,and 160 μmol/L)for the intervention in mouse chondrocytes was determined by cell counting kit-8 method.Chondrocytes were randomly divided into control group,model group(interleukin-1β)and Hemin group(interleukin-1β+Hemin).Reactive oxygen species,mitochondrial membrane potential and apoptosis of chondrocytes in each group were detected.(2)In vivo experiment:Adult C57BL/6 mice were randomly divided into normal group,model group(osteoarthritis)and Hemin group(osteoarthritis+Hemin),with eight mice in each group.After 4 weeks of Hemin treatment,the behavioral test and histopathological observation of the knee joint were performed in each group.Changes in extracellular matrix-related protein expression and apoptosis in chondrocytes and the expression level of Nrf2/HO-1 protein in cartilage tissue were detected. RESULTS AND CONCLUSION:In vitro experiment:the optimal concentration of Hemin on primary chondrocytes was 40 μmol/L.Compared with the model group,the level of reactive oxygen species was significantly reduced,the mitochondrial membrane potential was significantly improved,and the apoptosis of chondrocytes was reduced in the hemin-treated interleukin-1β-induced chondrocytes.In vivo experiment:After 4 weeks of treatment,compared with the model group,the lower limb function of mice in the Hemin group was significantly improved,the histopathological score was significantly improved,and the apoptosis of knee chondrocytes was significantly reduced.All these findings indicate that Hemin can alleviate oxidative stress,restore mitochondrial function and reduce apoptosis in mouse chondrocytes induced by interleukin-1β.Hemin can improve extracellular matrix degradation,promote chondrocyte anabolism,reduce catabolism and reduce chondrocyte apoptosis in knee osteoarthritis.It may act by activating the chondrocyte Nrf2/HO-1 signaling pathway in the inflammatory environment.
		                        		
		                        		
		                        		
		                        	
9.Oxidative Stress of Qidan Tangshen Granules (芪丹糖肾颗粒) in Treatment of 95 Patients with Early Diabetic Kidney Disease with Qi Deficiency,Blood Stasis,and Kidney Deficiency Syndrome:A Double-Blind,Double-Simulated,Randomized Controlled Trial
Jie ZHANG ; Yilei CONG ; Tengfei WU ; Qin LIU ; Yue YUAN ; Shilei CUI ; Hua YANG
Journal of Traditional Chinese Medicine 2025;66(7):695-703
		                        		
		                        			
		                        			ObjectiveTo evaluate the clinical efficacy and safety of Qidan Tangshen Granules (芪丹糖肾颗粒, QTG) in the treatment of early diabetic kidney disease (DKD) with qi deficiency, blood stasis, and kidney deficiency syndrome, and to explore its mechanism. MethodsA double-blind, double-simulated method was used to enroll 200 patients with early DKD and qi deficiency, blood stasis, and kidney deficiency syndrome. Patients were randomly assigned in a 1∶1 ratio to the treatment group (100 cases) and the control group (100 cases). The treatment group received QTG plus a valsartan capsule simulant, while the control group received valsartan capsules plus a QTG simulant, both for 12 weeks. The primary outcome was the urinary albumin-to-creatinine ratio (UACR). Secondary outcomes included estimated glomerular filtration rate (eGFR), fasting blood glucose (FBG), 2-hour postprandial blood glucose (PBG), glycated hemoglobin (HbA1c), and traditional Chinese medicine (TCM) syndrome scores (including individual symptom scores for fatigue, dull complexion, soreness and weakness of the waist and knees, headache and chest pain, irritability, spontaneous sweating, thirst and polydipsia, polyphagia, polyuria, numbness of the limbs, and the total TCM syndrome score). Oxidative stress markers including serum 8-hydroxy-2'-deoxyguanosine (8-OHDG), 3-nitrotyrosine (3-NT), and superoxide dismutase (SOD) were also assessed. Clinical efficacy and TCM syndrome efficacy were evaluated after treatment, and routine blood tests, urinalysis, and liver function tests were conducted and adverse reaction during the tria was recorded to assess safety. ResultsA total of 191 patients completed the study (95 in the treatment group and 96 in the control group). The treatment group showed significant reductions in UACR, FBG, PBG, and HbA1c levels after treatment (P<0.05 or P<0.01). The single TCM symptom scores except for polyphagia and total TCM syndrome scores significantly decreased (P<0.05 or P<0.01). Compared to the control group, the treatment group had signi-ficantly lower UACR, FBG, PBG levels, and total TCM syndrome scores, sinlge symptoms scores except for polyphagia and limb numbness (P<0.05 or P<0.01). Among 40 randomly selected patients (21 cases in the treatment group and 19 cases in the control group) for oxidative stress analysis, there were no significant differences in SOD, 3-NT, and 8-OHDG levels before and after treatment within or between groups (P>0.05). The overall effective rate in the treatment group was 64.2% (61/95) and 39.6% (38/96) in the control group, while the TCM syndrome efficacy rates were 80.0% (76/95) and 24.0% (23/96), respectively, with the treatment group showing superior efficacy (P<0.01). No significant differences were observed in routine blood tests, urinalysis, or liver function indices before and after treatment in either group (P>0.05). The incidence of adverse reactions was 8.4% (8/95) in the treatment group and 9.4% (9/96) in the control group, with no statistically significant difference (P>0.05). ConclusionQTG can effectively reduce UACR and blood glucose levels, alleviate clinical symptoms, and improve clinical efficacy in patients with early DKD with qi deficiency, blood stasis, and kidney deficiency syndrome. The treatment is well-tolerated and safe, with no significant impact on oxidative stress markers. 
		                        		
		                        		
		                        		
		                        	
10.Evaluation on the effectiveness of comprehensive control of a bedbug infestation incident in Jiading District, Shanghai
Ping WANG ; Jie LI ; Ruhua YU ; Qiaoyan WANG ; Peisong ZHONG ; Hong YUAN ; Dongsheng RENG
Shanghai Journal of Preventive Medicine 2025;37(1):79-83
		                        		
		                        			
		                        			ObjectiveTo investigate the infestation of bedbugs in a staff dormitory in Jiading District, Shanghai, to explore the measures to dispose Cimex lectularius linnaeus, so as to provide a scientific basis for the prevention and control of bedbugs. MethodsThe infestation of bedbugs in the dormitory of the company was determined through field investigation, accompanied by scientific guidance under the comprehensive control measures and an effect evaluation of the control results. ResultsA total of 114 rooms distributed in 3 dormitory buildings were investigated, with an average infestation rate of 42.11%, of which building B has the highest infestation rate of 51.52%. Six bedbug specimens were collected by visual inspection in the room, and all of them were identified as Cimex lectularius linnaeus. After a series of comprehensive control measures including environmental cleanup, aerosol elimination, replacement of wooden beds with iron frame beds, and purchase of all-inclusive mattress, the bedbug infestation rate dropped to 5.26%. ConclusionComprehensive control can effectively prevent the breeding and spread of bedbugs. Dissemination and education effort should be strengthened in case of the occurrence of bedbug infestation, together with an implementation of long-term and continuous surveillance and monitoring. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail