1.Brain Aperiodic Dynamics
Zhi-Cai HU ; Zhen ZHANG ; Jiang WANG ; Gui-Ping LI ; Shan LIU ; Hai-Tao YU
Progress in Biochemistry and Biophysics 2025;52(1):99-118
Brain’s neural activities encompass both periodic rhythmic oscillations and aperiodic neural fluctuations. Rhythmic oscillations manifest as spectral peaks of neural signals, directly reflecting the synchronized activities of neural populations and closely tied to cognitive and behavioral states. In contrast, aperiodic fluctuations exhibit a power-law decaying spectral trend, revealing the multiscale dynamics of brain neural activity. In recent years, researchers have made notable progress in studying brain aperiodic dynamics. These studies demonstrate that aperiodic activity holds significant physiological relevance, correlating with various physiological states such as external stimuli, drug induction, sleep states, and aging. Aperiodic activity serves as a reflection of the brain’s sensory capacity, consciousness level, and cognitive ability. In clinical research, the aperiodic exponent has emerged as a significant potential biomarker, capable of reflecting the progression and trends of brain diseases while being intricately intertwined with the excitation-inhibition balance of neural system. The physiological mechanisms underlying aperiodic dynamics span multiple neural scales, with activities at the levels of individual neurons, neuronal ensembles, and neural networks collectively influencing the frequency, oscillatory patterns, and spatiotemporal characteristics of aperiodic signals. Aperiodic dynamics currently boasts broad application prospects. It not only provides a novel perspective for investigating brain neural dynamics but also holds immense potential as a neural marker in neuromodulation or brain-computer interface technologies. This paper summarizes methods for extracting characteristic parameters of aperiodic activity, analyzes its physiological relevance and potential as a biomarker in brain diseases, summarizes its physiological mechanisms, and based on these findings, elaborates on the research prospects of aperiodic dynamics.
2.Modified Ditan Tang Regulates Biorhythm-related Genes in Rat Model of Non-alcoholic Fatty Liver Disease
Zhiwen PANG ; Yu LIU ; Nan SONG ; Jie WANG ; Jingxuan ZHU ; Zhen HUA ; Yupeng PEI ; Qun WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):115-124
ObjectiveTo investigate the effects of modified Ditan tang on genes related to the transcription-translation feedback loop (TTFL) of biorhythm in the rat model of non-alcoholic fatty liver disease (NAFLD) and its mechanism for prevention and treatment of NAFLD. MethodsSixty-five healthy SPF male SD rats were randomly assigned into blank (n=20), model (n=15), and low-, medium-, and high-dose (2.68, 5.36, and 10.72 g·kg-1·d-1, respectively) modified Ditan tang (n=10) groups. Other groups except the blank group were fed a high-fat diet for 12 weeks. The modified Ditan tang groups were treated with the decoction at corresponding doses by gavage, and the blank and model groups were treated with an equal volume of normal saline from the 9th week for 4 weeks. The levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in the serum were measured by an automatic biochemical analyzer. TG and non-esterified fatty acid (NEFA) assay kits were used to measure the levels of TG and NEFA in the liver. The pathological changes in the hypothalamus and liver were observed by hematoxylin-eosin staining, and the lipid deposition in the liver was observed by oil red O staining. The levels of brain-muscle ARNT-like protein 1 (BMAL1/ARNTL) in the hypothalamus and liver were determined by immunohistochemical staining. The mRNA and protein levels of BMAL1, circadian locomotor output cycles kaput (CLOCK), period circadian clock 2 (PER2), and cryptochrome1 (Cry1) in the hypothalamus and liver were determined by Real-time PCR and Western blot, respectively. ResultsCompared with the blank group, the model group showed elevated levels of TG, TC, LDL-C, AST, and ALT (P<0.01) and a lowered level of HDL-C (P<0.05) in the serum, elevated levels of TG and NEFA in the liver (P<0.01), pyknosis and deep staining of hypothalamic neuron cells, and a large number of vacuoles in the brain area. In addition, the model group showed lipid deposition in the liver, up-regulated mRNA and protein levels of CLOCK and BMAL1 (P<0.01), and down-regulated mRNA and protein levels of Cry1 and PER2 (P<0.01) in the hypothalamus and liver. Compared with the model group, all the three modified Ditan tang groups showed lowered levels of TG, TC, LDL-C, ALT, and AST (P<0.05, P<0.01) and an elevated level of HDL-C (P<0.05) in the serum, and lowered levels of TG and NEFA (P<0.05, P<0.01) in the liver. Furthermore, the three groups showed alleviated pyknosis and deep staining of hypothalamic neuron cells, reduced lipid deposition in the liver, down-regulated mRNA and protein levels of CLOCK and BMAL1 (P<0.05, P<0.01), and up-regulated mRNA and protein levels of Cry1 and PER2 (P<0.05, P<0.01) in the hypothalamus and liver. ConclusionModified Ditan tang can reduce lipid deposition in the liver and regulate the expression of CLOCK, BMAL1, Cry1, and PER2 in the TTFL of NAFLD rats.
3.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
4.Constructing a model of degenerative scoliosis using finite element method:biomechanical analysis in etiology and treatment
Kai HE ; Wenhua XING ; Shengxiang LIU ; Xianming BAI ; Chen ZHOU ; Xu GAO ; Yu QIAO ; Qiang HE ; Zhiyu GAO ; Zhen GUO ; Aruhan BAO ; Chade LI
Chinese Journal of Tissue Engineering Research 2025;29(3):572-578
BACKGROUND:Degenerative scoliosis is defined as a condition that occurs in adulthood with a coronal cobb angle of the spine>10° accompanied by sagittal deformity and rotational subluxation,which often produces symptoms of spinal cord and nerve compression,such as lumbar pain,lower limb pain,numbness,weakness,and neurogenic claudication.The finite element method is a mechanical analysis technique for computer modelling,which can be used for spinal mechanics research by building digital models that can realistically restore the human spine model and design modifications. OBJECTIVE:To review the application of finite element method in the etiology and treatment of degenerative scoliosis. METHODS:The literature databases CNKI,PubMed,and Web of Science were searched for articles on the application of finite element method in degenerative scoliosis published before October 2023.Search terms were"finite element analysis,biomechanics,stress analysis,degenerative scoliosis,adult spinal deformity"in Chinese and English.Fifty-four papers were finally included. RESULTS AND CONCLUSION:(1)The biomechanical findings from the degenerative scoliosis model constructed using the finite element method were identical to those from the in vivo experimental studies,which proves that the finite element method has a high practical value in degenerative scoliosis.(2)The study of the etiology and treatment of degenerative scoliosis by the finite element method is conducive to the prevention of the occurrence of the scoliosis,slowing down the progress of the scoliosis,the development of a more appropriate treatment plan,the reduction of complications,and the promotion of the patients'surgical operation.(3)The finite element method has gradually evolved from a single bony structure to the inclusion of soft tissues such as muscle ligaments,and the small sample content is increasingly unable to meet the research needs.(4)The finite element method has much room for exploration in degenerative scoliosis.
5.Synthesis and anti-tumor activity of ursolic acid-triazole derivatives
Acta Pharmaceutica Sinica 2025;60(1):172-178
Ten ursolic acid derivatives were designed from the lead compound ursolic acid by introducing 1,2,3-triazole at C-3 and C-28. The target compounds were synthesized and characterized by 1H NMR and 13C NMR. MTT assay was used to study the antitumor activity of these compounds in human cancer cells with high expression (MCF-7 and SGC-7901). The results showed that the antitumor activity of all compounds on MCF-7 and SGC-7901 tumor cells was significantly higher than that of ursolic acid. The compound
6.Predicting Postoperative Motor Function in High-risk Glioma Based on The Morphology Change of Motor Fiber Tracts
Qiang MA ; Song-Lin YU ; Chu-Yue ZHAO ; Xi-Jie WANG ; Song LIN ; Zhen-Tao ZUO ; Tao YU
Progress in Biochemistry and Biophysics 2025;52(4):1018-1026
ObjectiveGliomas in the motor functional area can damage the corticospinal tract (CST), leading to motor dysfunction. Currently, there is a lack of unified methods for evaluating the extent of CST damage, especially in patients with high surgical risk where the minimum distance from the lesion to the CST is less than 10 mm. This study aims to further clarify the classification method and clinical significance of CST morphological changes in these patients. MethodsThis retrospective study analyzed 109 high-risk functional area glioma patients who underwent neurosurgical treatment with preoperative diffusion tensor imaging (DTI) imaging and intraoperative neurostimulation guidance between 2014 and 2024. All patients had a lesion-to-tract distance (LTD) of less than 10 mm between the CST and the lesion. Preoperative DTI evaluation of CST involvement-induced morphological changes were reviewed. Patients were divided into 3 groups: 17 cases (15.6%) with symmetric CST morphology compared to the healthy side (CST symmetry), 48 cases (44.0%) with significant CST morphology changes compared to the healthy side (CST deformation), and 44 cases (40.4%) with CST overlap with the tumor (CST overlap). Then we classified patients according to preoperative assessment of tumor-induced morphological changes, and analyze postoperative motor function for each category. ResultsPostoperative pathology showed a significantly higher proportion of high-grade gliomas (HGG) in the CST overlap group compared to the other two groups (P=0.001). Logistic regression analysis showed that CST overlap was a predictor of HGG (P=0.000). The rate of total tumor resection in the CST deformation group and overlap group was lower than in the CST symmetric group (P=0.008). There was a total of 41 postoperative hemiplegic patients, with 4 cases (23.5%) in the CST symmetric group, 11 cases (22.9%) in the CST deformation group, and 26 cases (59.1%) in the CST overlap group. CST overlap with the tumor predicted postoperative hemiplegia (P=0.016). Two-way ANOVA analysis of the affected/healthy side and CST morphology groups showed significant main effects of CST grouping and healthy-affected side (P=0.017 and P=0.010), with no significant interaction (P=0.31). The fractional anisotropy (FA) value in the CST overlap group and the affected side was lower. A decrease in the FA value on the affected side predicted postoperative hemiplegia (sensitivity 69.2%, specificity 71.9%). ConclusionWe have established a method to predict postoperative hemiplegia in high-risk motor functional area glioma patients based on preoperative CST morphological changes. CST overlap leads to a decrease in CST FA values. This method can be used for precise patient management and aid in accurate preoperative surgical planning.
7.Application of intravenous anesthesia without intubation in transurethral blue laser vaporization of the prostate
Zhenwei FAN ; Zhen HAO ; Guoxiong LIU ; Quan DU ; Yu WANG ; Xiaoliang FU ; Wanglong YUN ; Xiaofeng XU
Journal of Modern Urology 2025;30(6):493-496
Objective: To investigate the safety and feasibility of transurethral blue laser vaporization of the prostate (BVP) under intravenous anesthesia without intubation. Methods: Clinical data of 30 benign prostatic hyperplasia (BPH) (prostate volume <40 mL) patients undergoing BVP under intravenous anesthesia without intubation in our hospital during Jul.and Nov.2024 were retrospectively analyzed.Preoperative and 1-month postoperative international prostate symptom score (IPSS), quality of life score (QoL), maximum urinary flow rate (Qmax), and postvoid residual volume (PVR) were compared.The operation time, cumulative blue laser activation time, recovery time, postoperative bladder irrigation time, postoperative catheter indwelling time, postoperative 2-hour visual analog scale (VAS) score and incidence of surgical and anesthetic complications were recorded. Results: All 30 patients successfully completed BVP under intravenous anesthesia without intubation.The operation time was (12.5±5.0) min, cumulative laser activation time (9.8±4.1) min, recovery time (6.8±1.2) min, postoperative bladder irrigation time (11.0±4.6) h, postoperative catheter indwelling time (2.7±1.1) days and postoperative 2-hour VAS score was (3.0±1.3).No cases required conversion to intubated general anesthesia, and no severe perioperative surgical or anesthetic complications occurred.Significant improvements in IPSS, QoL, Qmax, and PVR were observed 1 month postoperatively (P<0.001). Conclusion: BVP under intravenous anesthesia without intubation in the treatment of prostate volume <40 mL BPH is clinically feasible, significantly improving lower urinary tract symptoms without significant surgical or anesthetic complications.
8.Influenza vaccination on preventing the respiratory tract infection in preschool children
Mei LYU ; Zhen WANG ; Yu' ; e WANG ; Liyun FANG ; Yang YANG
Journal of Public Health and Preventive Medicine 2025;36(4):73-76
Objective To explore the effect of influenza vaccination on the prevention of respiratory tract infection in preschool children. Methods The clinical data of 400 preschool children (1-6 years old) who were diagnosed with respiratory tract infection for the first time in department of pediatrics of Xi'an Third Hospital and second department of respiratory medicine of Xi'an Children's Hospital were retrospectively analyzed from January 2023 to December 2023, including acute bronchitis, upper respiratory tract infection and pneumonia. According to the actual influenza vaccination status, the patients were divided into vaccination group (n=210) and non-vaccination group (n=190). The incidence of respiratory tract infection was compared between both groups. The fever duration, average course of disease, hospitalization rate, clinical symptoms scores (fever, cough, nasal congestion, sore throat), inflammation indicators [C-reactive protein (CRP), white blood cell count (WBC), neutrophil percentage (NE%)] and recurrence rate after 6 months of follow-up were compared. Results The incidence of respiratory tract infection in the vaccination group was significantly lower than that in the non-vaccination group (21.43% vs 43.16%, P<0.05), and the hospitalization rate was significantly lower compared with that in the non-vaccination group (P<0.05). The scores of fever, cough, nasal congestion and sore throat were lower in the vaccination group than those in the non-vaccination group (P<0.05), and the CRP, WBC and NE% were significantly lower compared to the non-vaccination group (P<0.05). After 6 months of follow-up, the recurrence rate in the vaccination group was 11.11% (5/45), which was significantly lower than 26.83% (22/82) in the non-vaccination group (χ2=0.038, P=4.288<0.05). Conclusion Influenza vaccination can effectively reduce the incidence of respiratory tract infection in preschool children, relieve the symptoms and shorten the disease course after infection. Its preventive effect on influenza is particularly significant, suggesting the importance of strengthening influenza vaccination in preschool children.
9.Incidence rate and independent risk factors of synchronous multiple lesions in early gastric cancer
Yanqing ZHOU ; Yue YANG ; Yu XIAO ; Hongyong LI ; Zhen NI
Journal of Public Health and Preventive Medicine 2025;36(4):81-84
Objective To explore the incidence rate and independent risk factors of synchronous multiple early gastric cancer (SMEGC) in patients with early gastric cancer, and to provide evidence for early screening and intervention of high-risk population. Methods A retrospective analysis was performed on 308 patients with early gastric cancer who received treatment in the hospital from March 2019 to March 2024. The incidence rate of SMEGC was counted, and the risk factors were analyzed by univariate and multivariate Logistic regression analyses. Results Among the 308 patients with early gastric cancer in this study, 23 cases were SMEGC and 285 were single early gastric cancer, which were included in the SMEGC group and the single group respectively. The incidence rate of SMEGC was 7.47% (23/308). Compared with the single group, the proportions of male, smoking history, tumor diameter≤2 mm, chronic atrophic gastritis and intestinal metaplasia degree were higher in the SMEGC group (2=4.331、8.608、4.618、6.490、4.897,P=0.037、0.003、0.032、0.001、0.027). Logistic regression analysis suggested that chronic atrophic gastritis (OR=3.133, 95%CI: 1.240-7.918) and moderate-to-severe intestinal metaplasia (OR=3.171, 95%CI: 1.252-8.029) were independent risk factors for SMEGC (P<0.05). Conclusion Some patients with early gastric cancer are SMEGC. Chronic atrophic gastritis and moderate-to-severe intestinal metaplasia are independent risk factors affecting the occurrence of SMEGC. It is recommended to regularly screen high-risk patients and optimize management strategies to reduce the risk of SMEGC.
10.Analysis of T7 RNA Polymerase: From Structure-function Relationship to dsRNA Challenge and Biotechnological Applications
Wei-Chen NING ; Yu HUA ; Hui-Ling YOU ; Qiu-Shi LI ; Yao WU ; Yun-Long LIU ; Zhen-Xin HU
Progress in Biochemistry and Biophysics 2025;52(9):2280-2294
T7 RNA polymerase (T7 RNAP) is one of the simplest known RNA polymerases. Its unique structural features make it a critical model for studying the mechanisms of RNA synthesis. This review systematically examines the static crystal structure of T7 RNAP, beginning with an in-depth examination of its characteristic “thumb”, “palm”, and “finger” domains, which form the classic “right-hand-like” architecture. By detailing these structural elements, this review establishes a foundation for understanding the overall organization of T7 RNAP. This review systematically maps the functional roles of secondary structural elements and their subdomains in transcriptional catalysis, progressively elucidating the fundamental relationships between structure and function. Further, the intrinsic flexibility of T7 RNAP and its applications in research are also discussed. Additionally, the review presents the structural diagrams of the enzyme at different stages of the transcription process, and through these diagrams, it provides a detailed description of the complete transcription process of T7 RNAP. By integrating structural dynamics and kinetics analyses, the review constructs a comprehensive framework that bridges static structure to dynamic processes. Despite its advantages, T7 RNAP has a notable limitation: it generates double-stranded RNA (dsRNA) as a byproduct. The presence of dsRNA not only compromises the purity of mRNA products but also elicits nonspecific immune responses, which pose significant challenges for biotechnological and therapeutic applications. The review provides a detailed exploration of the mechanisms underlying dsRNA formation during T7 RNAP catalysis, reviews current strategies to mitigate this issue, and highlights recent progress in the field. A key focus is the semi-rational design of T7 RNAP mutants engineered to minimize dsRNA generation and enhance catalytic performance. Beyond its role in transcription, T7 RNAP exhibits rapid development and extensive application in fields, including gene editing, biosensing, and mRNA vaccines. This review systematically examines the structure-function relationships of T7 RNAP, elucidates the mechanisms of dsRNA formation, and discusses engineering strategies to optimize its performance. It further explores the engineering optimization and functional expansion of T7 RNAP. Furthermore, this review also addresses the pressing issues that currently need resolution, discusses the major challenges in the practical application of T7 RNAP, and provides an outlook on potential future research directions. In summary, this review provides a comprehensive analysis of T7 RNAP, ranging from its structural architecture to cutting-edge applications. We systematically examine: (1) the characteristic right-hand domains (thumb, palm, fingers) that define its minimalistic structure; (2) the structure-function relationships underlying transcriptional catalysis; and (3) the dynamic transitions during the complete transcription cycle. While highlighting T7 RNAP’s versatility in gene editing, biosensing, and mRNA vaccine production, we critically address its major limitation—dsRNA byproduct formation—and evaluate engineering solutions including semi-rationally designed mutants. By synthesizing current knowledge and identifying key challenges, this work aims to provide novel insights for the development and application of T7 RNAP and to foster further thought and progress in related fields.


Result Analysis
Print
Save
E-mail