1.Effect of elbow-wrist functional orthosis on plantar pressure and balance function in stroke patients with hemiplegia
Cheng WU ; Yunfeng ZHANG ; Weining WANG ; Kewei YU ; Yanzheng ZHANG ; Jiarong SHEN ; Yi WU
Chinese Journal of Rehabilitation Theory and Practice 2026;32(1):30-39
ObjectiveTo explore the effect of elbow-wrist functional orthosis on plantar pressure distribution and balance function in stroke patients with hemiplegia. MethodsFrom June, 2024 to April, 2025, 60 patients with post-stroke hemiplegia were recruited from Huashan Hospital, Fudan University, and Shanghai Hebin Rehabilitation Hospital. They were randomly divided into control group (n = 30) and intervention group (n = 30). The control group received routine neurological rehabilitation, while the intervention group received additional training with an elbow-wrist functional orthosis on the affected side, for eight weeks. Before and after intervention, the Modified Ashworth Scale (MAS) of the elbow joint, plantar pressure symmetry index (SI), plantar contact area and mean plantar pressure were recorded, and balance and mobility were assessed using the Berg Balance Scale (BBS), Timed Up & Go Test (TUGT) and 10-Meter Walk Test (10MWT). ResultsTwo cases dropped out in the control group. After treatment, MAS grades of the elbow joint, forefoot SI, affected side plantar pressure area, BBS scores, TUGT and 10MWT of both groups improved (|Z| > 3.969, |t| > 3.528, P < 0.01), while the hindfoot SI and average pressure of the affected foot improved in the intervention group (∣t∣ > 4.264, P < 0.001). Except for TUGT and 10MWT, the intervention group was superior to the control group (∣Z∣ > 2.030, ∣t∣ > 2.096, P < 0.05). ConclusionThe elbow-wrist functional orthosis can enhance balance function in stroke patients with hemiplegia by reducing upper-limb spasticity, optimizing center-of-gravity distribution, and improving postural control.
2.Differences in chemical components and quality analysis of Gardenia jasminoides before and after processing with ginger
Lihua TANG ; Yu WU ; Xuedi HUANG ; Xiaolian HU ; Yi TANG ; Zilong CHEN ; Xiaofan XIAO ; Xide YE
China Pharmacy 2026;37(2):168-173
OBJECTIVE To analyze the differences in chemical components of Gardenia jasminoides before and after processing with ginger, and to evaluate the quality differences among different producing areas. METHODS Ultra-high performance liquid chromatography-tandem time-of-flight mass spectrometry was used to analyze the compositional differences of G. jasminoides before and after processing with ginger. The water content, total ash, and ethanol-soluble extract content of ginger- processed G. jasminoides were determined according to the 2020 edition of Chinese Pharmacopoeia. High performance liquid chromatography was adopted to determine the contents of genipin gentiobioside, geniposide, crocin Ⅰ and crocin Ⅱ in ginger- processed G. jasminoides. RESULTS A total of 49 chemical components were identified from raw G. jasminoides and ginger- processed G. jasminoides, including 14 flavonoids, 15 iridoids, 10 organic acids, 2 alkaloids and 8 other compounds. Among them, 42 components were detected in raw G. jasminoides, 28 in ginger-processed G. jasminoides, and 21 components were common to both. After processing with ginger, raw G. jasminoides lost 21 components (including iridoids, flavonoids, alkaloids, and others), while 7 chemical components were added (including coumarins, organic acids, organic acid esters, and flavonoids). For the 15 batches of ginger-processed G. jasminoides, the water content ranged from 5.64% to 7.11%, total ash from 2.92% to 4.87%, and ethanol-soluble extract from 40.61% to 58.02%. The average contents of genipin gentiobioside, geniposide, crocin Ⅰ and crocin Ⅱ were 0.108 7, 0.542 2, 0.565 0, and 0.012 5 mg/g, respectively. CONCLUSIONS After processing with ginger, G. jasminoides loses 21 components, while 7 new components are added. Differences are observed in the water content, total ash, ethanol-soluble extract, and the contents of genipin gentiobioside, geniposide, crocin Ⅰ, and crocin Ⅱ of ginger-processed G. jasminoides from different producing areas. Notably, samples from Fujian exhibit high contents of genipin gentiobioside and ethanol-soluble extract, while samples from Jiangxi have a high content of crocin Ⅰ.
3.Construction of a system for isolation and purification of NK cells from whole blood donations
Tengyu CAO ; Huayu LIN ; Xuanzhi ZHANG ; Cuimi DUAN ; Yi LIU ; Xiaonan XUE ; Liping SUN ; Yang YU
Chinese Journal of Blood Transfusion 2025;38(2):181-188
[Objective] To explore the feasibility of using whole blood as a source of NK cells for allogeneic CAR NK cell therapy and activated NK cell reinfusion therapy, and initially construct a technical system for the separation and purification of NK cells from whole blood. [Methods] All peripheral blood mononuclear cells (PBMCs) were enriched from 400 mL of whole blood by manual separation and machine separation, respectively. The erythrocyte loss rate, PBMCs number, NK cell purity of the two methods were compared. NK cells were sorted from PBMCs by three separation and enrichment methods as immunomagnetic bead negative selection method, platelet lysate culture expansion and PERCOLL density gradient separation method, and the purity and yield of NK cells, the activity of NK cells and the tumor-killing ability of the three separation and enrichment methods were compared. [Results] The proportion of NK cells in the lymphocyte population was higher in the manual separation method than in the machine separation method[(13.16±5.16)% vs (8.56±3.92)%, P<0.05]; the number PBMCs was lower in the manual separation method than in the machine separation method[(4.09±1.80)×108vs (6.49±2.16)×108, P<0.05], and there was no difference in the red blood cell loss between the two methods (P>0.05). The purity of NK cells isolated and enriched from PBMCs by manual separation method using immunomagnetic was (96.77±2.31)%; the yield was (56.27±10.47)%; the inhibition of tumor proliferation was (38.67±14.05)%; and the tumor killing rate was (19.90±8.05)%. The purity of NK cells isolated and enriched from PBMCs by manual separation method using platelet lysis culture expansion method was the highest at day 7, which was (54.84±15.80)%; the cell expansion multiple could reach 16.92±6.28 at day 7; the in vitro tumor killing rate of NK cells was (15.83±5.5)%; the tumor inhibition rate was (44.33±13.5)%; and there was no difference in the toxicity and activity of NK cells between the two methods (P>0.05). The purity of NK cells isolated and enriched by PERCOLL density gradient separation method was (15.83±5.82)%, and the yield was (14±6.25)%, which was significantly lower than the other two methods. [Conclusion] PBMCs isolated from whole blood by manual separation and NK cells enriched by negative selection with immunomagnetic beads have the potential to provide NK cell materials for CAR-NK cell therapy, and NK cells enriched by platelet lysate-conditioned medium have the potential to provide NK cells for large-scale NK cell activation reinfusion therapy.
4.Effect of Folic Acid-modified Crebanine Polyethylene Glycol-polylactic Acid Hydroxyacetic Acid Copolymer Nanoparticles Combined with Ultrasonic Irradiation on Subcutaneous Tumor Growth of Liver Cancer in Mice
Rui PAN ; Junze TANG ; Hailiang ZHANG ; Kun YU ; Xiaoyu ZHAO ; Xin CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):217-225
ObjectiveTo investigate the effect of folic acid-modified crebanine polyethylene glycol-polylactic acid hydroxyacetic acid copolymer(PEG-PLGA) nanoparticles(FA-Cre@PEG-PLGA NPs, hereinafter referred to as NPs) combined with ultrasonic irradiation on subcutaneous tumor of liver cancer in Kunming(KM) mice. MethodsEighty-four healthy male KM mice were utilized to establish a subcutaneous tumor model of mouse hepatocellular carcinoma with H22 cells, then mice were randomly divided into model group, placebo group, hydroxycamptothecin group(8 mg∙kg-1), low, medium and high dose crebanine raw material groups(2, 2.5, 3 mg∙kg-1, hereinafter referred to as the low, medium and high dose crebanine groups, respectively), low, medium and high dose NPs groups(2, 2.5, 3 mg∙kg-1), and low, medium and high dose NPs combined with ultrasonic irradiation groups(2, 2.5, 3 mg∙kg-1, hereinafter referred to as the low, medium and high dose combination groups, respectively). The corresponding doses of drugs were administered via tail vein injection, the model group received no treatment, while the placebo group was injected with an equivalent amount of normal saline. Dosing was conducted for a total of 10 times on alternate days. The body mass of the mice was monitored, and parameters such as body mass change rate, thymus index, spleen index, tumor volume, tumor weight, relative tumor growth rate(T/C), and tumor inhibition rate(TGI) were calculated. Pathological changes in liver and kidney tissues as well as the tumor were observed by hematoxylin-eosin(HE) staining. Additionally, the levels of aspartate aminotransferase(AST), alanine aminotransferase(ALT), blood urea nitrogen(BUN) and creatinine(CREA) in serum of mice were detected by biochemical method. Furthermore, the effect of ultrasound on the distribution of NPs in subcutaneous tumors of mouse hepatocellular carcinoma was observed by in vivo imaging technique. ResultsAmong different treatment methods, the combination of NPs and ultrasound irradiation had the best therapeutic effect. Compared with the model group, the body mass growth rates of mice in the medium and high combination groups decreased, while the thymus index and spleen index increased, but there was no statistically significant difference in serum AST, ALT, BUN and CREA levels, indicating that NPs combined with ultrasound irradiation had little effect on the normal physiological state of the body, oth groups had TGI>40% and T/C<60%, indicating a clear anti-tumor effect. Pathological analysis showed that compared with the NPs groups, the combination groups exhibited varying degrees of necrosis in tumor cells, accompanied by less damage to the liver and kidneys. In vivo imaging of small animals showed that compared with the high dose NPs group, the high dose combination group had stronger tumor targeting ability(P<0.01). ConclusionNPs combined with ultrasonic irradiation can not only effectively targeted the drug to the tumor site, inhibit the subcutaneous tumor growth of mouse liver cancer, but also decrease damage to liver and kidney tissues.
5.DIA Proteomics Reveals Mechanism of Acanthopanacis Senticosi Radix et Rhizoma seu Caulis Extract in Treating α-Syn Transgenic Parkinson's Disease in Mice
Qi ZHENG ; Yi LU ; Donghua YU ; Liangyou ZHAO ; Chunsheng LIN ; Fang LU ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):40-50
ObjectiveTo investigate the mechanism of Acanthopanacis Senticosi Radix et Rhizoma seu Caulis extract (ASH) in treating Parkinson's disease (PD) in mice by Data-Independent Acquisition (DIA) proteomics. MethodsThe α-Synuclein (α-Syn) transgenic PD mice were selected as suitable models for PD, and they were randomly assigned into PD, ASH (61.25 mg·kg-1), and Madopar (97.5 mg·kg-1) groups. Male C57BL/6 mice of the same age were selected as the control group, with eight mice in each group. Mice were administrated with corresponding drugs by gavage once a day for 20 days. The pole climbing time and the number of autonomic activities were recorded to evaluate the exercise ability of mice. Hematoxylin-eosin staining was employed to observe neuronal changes in the substantia nigra of PD mice. Immunohistochemistry (IHC) was employed to measure the tyrosine hydroxylase (TH) activity in the substantia nigra and assess the areal density of α-Syn in the striatum. DIA proteomics was used to compare protein expression in the substantia nigra between groups. IHC was utilized to validate key differentially expressed proteins, including Lactotransferrin, Notch2, Ndrg2, and TMEM 166. The cell counting kit-8 (CCK-8) method was used to investigate the effect of ASH on the viability of PD cells with overexpression of α-Syn. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the protein and mRNA levels of Lactotransferrin, Notch2, Ndrg2, and TMEM 166 in PD cells. ResultsCompared with the control group, the model group showed prolonged pole climbing time, diminished coordination ability, reduced autonomic activities (P<0.01), and reduced swelling neurons. Compared with the model group, ASH and Madopar reduced the climbing time, increased autonomic activities (P<0.01), and ameliorated neuronal damage. Compared with the control group, the model group showed a decrease in TH activity in the substantia nigra and an increase in α-Syn accumulation in the striatum (P<0.01). Compared with the model group, the ASH group showed an increase in TH activity and a reduction in α-Syn accumulation (P<0.05). DIA proteomics revealed a total of 464 differentially expressed proteins in the model group compared with the control group, with 323 proteins being up-regulated and 141 down-regulated. A total of 262 differentially expressed proteins were screened in the ASH group compared with the model group, including 85 proteins being up-regulated and 177 down-regulated. Kyoto encylopedia of genes and genomes (KEGG) pathway analysis indicated that ASH primarily regulated the Notch signaling pathway. The model group showed up-regulation in protein levels of Notch2, Ndrg2, and TMEM 166 and down-regulation in the protein level of Lactotransferrin compared with the control group (P<0.01). Compared with the model group, ASH down-regulated the protein levels of Notch2, Ndrg2, and TMEM 166 (P<0.05) while up-regulating the protein level of Lactotransferrin (P<0.01). The IHC results corroborated the proteomics findings. The cell experiment results showed that compared with the control group, the modeling up-regulated the mRNA and protein levels of Notch2, Ndrg2, and TMEM 166 (P<0.01), while down-regulating the mRNA and protein levels of Lactotransferrin (P<0.01). Compared with the model group, ASH reduced the mRNA and protein levels of Notch2, Ndrg2, and TMEM 166 (P<0.01), while increasing the mRNA and protein levels of Lactotransferrin (P<0.05, P<0.01). ConclusionASH may Synergistically inhibit the Notch signaling pathway and mitigate neuronal damage by down-regulating the expression of Notch2 and Ndrg2. Additionally, by up-regulating the expression of Lactotransferrin and down-regulating the expression of TMEM166, ASH can address brain iron accumulation, intervene in ferroptosis, inhibit mitophagy, and mitigate reactive oxygen species damage, thereby protecting nerve cells and contributing to the treatment of PD.
6.Research progress on circular RNA in periodontitis
HE Yi ; HAN Yaoling ; YU Dongsheng
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(3):252-259
Periodontitis, a chronic inflammatory disease caused by plaque biofilm, is characterized by the irreversible pathological destruction of periodontal supporting tissues, including gums, periodontal membranes, alveolar bone, and cementum, resulting in tooth loosening and dislocation in severe cases. Currently, research on the pathogenesis, early diagnosis, and treatment of periodontitis is limited. Circular RNAs (circRNAs), previously considered “splicing noise”, have gained increasing research attention with the development of high-throughput sequencing technologies and bioinformatics. CircRNAs are non-coding RNAs lacking a 5' cap and 3' poly(A) tail, with a unique covalently closed ring structure, high expression, long half-life, and resistance to nuclease degradation, which can regulate splicing, encode proteins, and act as microRNA and RNA-binding protein sponges. In recent years, circRNAs have been reported to be involved in the occurrence and development of periodontitis, suggesting its potential role as a therapeutic target for periodontitis treatment. In this study, we described the biological function of circRNAs and their role in the development of periodontitis and the regulation of periodontal homeostasis and immune microenvironment. We found that circRNAs affect periodontal homeostasis and immune microenvironment by regulating the apoptosis of periodontal tissue cells (such as periodontal ligament stem cells and gingival fibroblasts) and regulating immune cells or cytokines, respectively. This review article summarizes the latest research progress on the association between circRNAs and periodontitis to provide a scientific basis for the development of novel diagnostic, therapeutic, and prognostic strategies for periodontitis.
7.Clinical study on the treatment of chronic atrophic gastritis with spleen and stomach weakness syndrome by Piwei Peiyuan Pill combined with moxibustion
Kairui WU ; Yu YE ; Bei PEI ; Biao SONG ; Yi ZHANG ; Tingting LI ; Qi YANG ; Yun LIU ; Xuejun LI
Journal of Beijing University of Traditional Chinese Medicine 2025;48(2):280-290
Objective:
To determine the clinical efficacy and mechanism of Piwei Peiyuan Pill (PPP) combined with moxibustion for treating patients with chronic atrophic gastritis (CAG) with spleen and stomach weakness syndrome.
Methods:
Ninety-six CAG patients with spleen and stomach weakness syndrome who met the inclusion and exclusion criteria were enrolled at the Department of Spleen and Stomach Diseases of the Second Affiliated Hospital of Anhui University of Chinese Medicine from June 2022 to December 2023. The patients were randomly divided into a control, a Chinese medicine, and a combined group using a random number table method, with 32 cases in each group (two cases per group were excluded). The control group was treated with rabeprazole combined with folic acid tablets (both thrice daily), the Chinese medicine group was treated with PPP (8 g, thrice daily), and the combined group was treated with moxa stick moxibustion (once daily) on the basis of the Chinese medicine group for 12 consecutive weeks. Gastric mucosa atrophy in the three groups was observed before and after treatment. The gastric mucosal pathological score was evaluated. The Patient Reported Outcome (PRO) scale was used to evaluate the patients′ physical and mental health status and quality of life.An enzyme-linked immunosorbent assay was used to detect serum tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-4, IL-10, IL-37, and transforming growth factor (TGF)-β levels in each group. Real-time fluorescence PCR was used to detect the relative expression levels of signal transducer and activator of transcription 3 (STAT3) and mammalian target of rapamycin (mTOR) mRNA in each group. Western blotting was used to detect the relative expression levels of proteins related to the STAT3/mTOR signaling pathway, and the adverse drug reactions and events were recorded and compared.
Results:
There was no statistical difference in age, gender, disease duration, family history of gastrointestinal tumors, alcohol consumption history, and body mass index among the three groups of patients.The total therapeutic efficacy rates of the control, Chinese medicine, and combined groups in treating gastric mucosal atrophy were 66.67% (20/30), 86.67% (26/30), and 90.00% (27/30), respectively (P<0.05). Compared to before treatment, the pathological and PRO scale scores of gastric mucosa in each group decreased after treatment, and TNF-α, IL-1β, IL-37, and TGF-β levels decreased. The relative STAT3 and mTOR mRNA expression levels, as well as the relative STAT3, p-STAT3, mTOR, and p-mTOR protein expression levels decreased (P<0.05), whereas the IL-4 and IL-10 levels increased (P<0.05). After treatment, compared to the control group, the pathological score of gastric mucosa, PRO scale score, TNF-α, IL-1β, IL-37, TGF-β content, relative STAT3 and mTOR mRNA expression levels, and relative STAT3, p-STAT3, mTOR, and p-mTOR protein expression levels in the Chinese medicine and combined groups after treatment were reduced (P<0.05), whereas the IL-4 and IL-10 levels increased (P<0.05). After treatment, compared to the Chinese medicine group, the combined group showed a decrease in relative STAT3, mTOR mRNA expression levels, and STAT3, p-STAT3, mTOR, and p-mTOR protein expression levels (P<0.05).
Conclusion
The combination of PPP and moxibustion may regulate the inflammatory mechanism of the body by inhibiting the abnormal activation of the STAT3/mTOR signaling pathway, upregulating related anti-inflammatory factor levels, downregulating pro-inflammatory factor expression, and increasing related repair factor expression, thereby promoting the recovery of atrophic gastric mucosa, reducing discomfort symptoms, and improving the physical and mental state of CAG patients with spleen and stomach weakness syndrome.
8.Research progress of nano drug delivery system based on metal-polyphenol network for the diagnosis and treatment of inflammatory diseases
Meng-jie ZHAO ; Xia-li ZHU ; Yi-jing LI ; Zi-ang WANG ; Yun-long ZHAO ; Gao-jian WEI ; Yu CHEN ; Sheng-nan HUANG
Acta Pharmaceutica Sinica 2025;60(2):323-336
Inflammatory diseases (IDs) are a general term of diseases characterized by chronic inflammation as the primary pathogenetic mechanism, which seriously affect the quality of patient′s life and cause significant social and medical burden. Current drugs for IDs include nonsteroidal anti-inflammatory drugs, corticosteroids, immunomodulators, biologics, and antioxidants, but these drugs may cause gastrointestinal side effects, induce or worsen infections, and cause non-response or intolerance. Given the outstanding performance of metal polyphenol network (MPN) in the fields of drug delivery, biomedical imaging, and catalytic therapy, its application in the diagnosis and treatment of IDs has attracted much attention and significant progress has been made. In this paper, we first provide an overview of the types of IDs and their generating mechanisms, then sort out and summarize the different forms of MPN in recent years, and finally discuss in detail the characteristics of MPN and their latest research progress in the diagnosis and treatment of IDs. This research may provide useful references for scientific research and clinical practice in the related fields.
9.Study of adsorption of coated aldehyde oxy-starch on the indexes of renal failure
Qian WU ; Cai-fen WANG ; Ning-ning PENG ; Qin NIE ; Tian-fu LI ; Jian-yu LIU ; Xiang-yi SONG ; Jian LIU ; Su-ping WU ; Ji-wen ZHANG ; Li-xin SUN
Acta Pharmaceutica Sinica 2025;60(2):498-505
The accumulation of uremic toxins such as urea nitrogen, blood creatinine, and uric acid of patients with renal failure
10.Research progress in small molecule inhibitors of complement factor B
Shuai WEN ; Yao ZHAO ; Yan WANG ; Xing LI ; Yi MOU ; Zheng-yu JIANG
Acta Pharmaceutica Sinica 2025;60(1):37-47
The alternative pathway (AP) of the complement system is a key contributor to the pathogenesis of several diseases including paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), C3 glomerular disease (C3G) and age-related macular degeneration (AMD). Complement factor B (CFB) is a trypsin-like serine protein that circulates in the human bloodstream in a latent form. As a key node of the alternative pathway, it is an important target for the treatment of diseases mediated by the complement system. With the successful launch of iptacopan, the CFB small molecule inhibitors has become a current research hotspot, a number of domestic and foreign pharmaceutical companies are actively developing CFB small molecule inhibitors. In this paper, the research progress of CFB small molecule inhibitors in recent years is systematically summarized, the representative compounds and their activities are introduced according to structural types and design ideas, so as to provide reference and ideas for the subsequent research on CFB small molecule inhibitors.


Result Analysis
Print
Save
E-mail