1.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
2.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
3.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
4.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
5.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
6.Construction of air quality health index for respiratory diseases in Urumqi
Yu SHI ; Di WU ; YILIPA YILIHAMU ; Yanling ZHENG ; Liping ZHANG
Journal of Environmental and Occupational Medicine 2024;41(3):276-281
Background Air quality health index (AQHI) is derived from exposure-response coefficients calculated from air pollution and morbidity/mortality time series, which helps to understand the overall short-term health impacts of air pollution. Objective To study the effects of common air pollutants on respiratory diseases in Urumqi and to develop an AQHI for the risk of respiratory diseases in the city. Methods The daily outpatient volume data of respiratory diseases from The First Affiliated Hospital of Xinjiang Medical University, meteorological data (daily mean temperature and daily mean relative humidity), and air pollutants [fine particulate matter (PM2.5), inhalable particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon dioxide (CO), and ozone (O3)] in Urumqi City, Xinjiang, China were collected from January 1, 2017 to December 31, 2021. A distributed lag nonlinear model based on quasi-Poisson distribution was constructed by time-stratified case crossover design. Adopting zero concentration of air pollutants as reference, the exposure-response coefficient (β value) was used to quantify the impact of included air pollutants on the risk of seeking medical treatment for respiratory diseases, and the AQHI was established. The association of between AQHI and the incidence of respiratory diseases and between air quality index (AQI) and the incidence of respiratory diseases was compared to evaluate the prediction effect of AQHI. Results Each 10 µg·m−3 increase in PM10, SO2, NO2, and O3 concentrations presented the highest excess risk of seeking outpatient services at 3 d cumulative lag (Lag03) and 2d cumulative lag (Lag02), with increased risks of morbidity of 0.687% (95%CI: 0.101%, 1.276%), 17.609% (95%CI: 3.253%, 33.961%), 13.344% (95%CI: 8.619%, 18.275%), and 4.921% (95%CI: 1.401%, 8.502%), respectively. There was no statistically significant PM2.5 or CO lag effect. An AQHI was constructed based on a model containing PM10, SO2, NO2, and O3, and the results showed that the excess risk of respiratory disease consultation for the whole population, different genders, ages, or seasons for each inter-quartile range increase in the AQHI was higher than the corresponding value of AQI. Conclusion PM10, SO2, NO2, and O3 impact the number of outpatient visits for respiratory diseases in Urumqi, and the constructed AQHI for the risk of respiratory diseases in Urumqi outperforms the AQI in predicting the effect of air pollution on respiratory health.
7.Effectiveness of extensively hydrolyzed formula in treating feeding intolerance in preterm infants
Hanshu YU ; Ruizhen SUN ; Yanling YANG ; Yuehua SU ; Zhongying FU
Chinese Journal of Child Health Care 2024;32(4):456-459
【Objective】 To analyze the effect of extensively hydrolyzed formula(eHF) in the treatment of feeding intolerance in preterm infants and the effect on hospital infection, in order to provide reference for the clinical treatment of feeding intolerance in preterm infants. 【Methods】 A total of 208 cases of preterm infants with feeding intolerance diagnosed and treated in Shandong Heze Municipal Hospital from April 2017 to February 2020 were selected into the clinical trial for eligibility assessment, then were randomly assigned into study group(n=100) and control group(n=100) after screening and exclusion. Children in the control group were fed with standard preterm formula, while children in the study group were fed with eHF. Feeding tolerance indicators, including daily milk intake, time to meconium evacuation, time to full gastrointestinal nutrition, total gastric residual counts(GRV1) in the 7-d period after resumption of breastfeeding, ratio of all-day gastric residual counts/all-day estimated milk intake after resumption of breastfeeding(GRV2) were compared between the two groups, and growth indicators(body weight growth rate, head dimension growth rate), complication incidence [necrotizing enterocolitis(NEC), pathological jaundice, positive fecal occult blood or blood in stool] and incidence of hospital-acquired infections. 【Results】 The daily milk intake(t=5.037) of the study group was higher than that of the control group, and the time of foetal excretion(t=9.217), the time to reach full gastrointestinal nutrition(t=15.833), GRV1(t=6.737), GRV2(t=9.956) were lower than those of the control group, and the differences were all statistically significant(P<0.05). The rate of weight gain(t=2.454) and head dimension growth(t=5.469) in the study group was significantly higher than those of the control group(P<0.05). The incidence of the three complications of NEC, pathological jaundice and positive fecal occult blood or blood in stool(χ2=4.310) and the incidence of hospital infections(χ2=4.688) were significantly lower in the study group than in the control group(P<0.05). 【Conclusions】 Compared with the standard formula milk for preterm infants, eHF can significantly improve the feeding intolerance of preterm infants, promote growth and development, and reduce the occurrence of hospital-acquired infections. Therefore, eHF can be widely used in clinic for preterm infants with feeding intolerance.
8.Effects of meteorological factors and air pollutants on hospitalization volume of ischemic heart disease in Urumqi City
Di WU ; Chenchen WANG ; Yaoqin LU ; Cheng LI ; Yu SHI ; YILIPA YILIHAMU ; Yanling ZHENG ; Liping ZHANG
Journal of Environmental and Occupational Medicine 2024;41(10):1115-1123
Background The effects of meteorological factors and air pollutants on ischemic heart disease (IHD) hospitalizations in Urumqi have not been fully understood. Objective To investigate the effects of meteorological conditions (temperature, relative humidity) and common air pollutants [fine particulate matter (PM2.5), inhalable particulate matter (PM10), ozone (O3), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO)] on the daily hospitalization volume of IHD, and to provide a scientific basis for the development of targeted prevention and management strategies. Methods Basic information of
9.Screening and experimental validation of hub genes for myocardial isch-emia-reperfusion injury based on bioinformatics
Jianru WANG ; Xingyuan LI ; Shiyang XIE ; Yanling CHENG ; Hongxin GUO ; Mingjun ZHU ; Rui YU
Chinese Journal of Pathophysiology 2024;40(3):473-483
AIM:Using bioinformatics analysis methods to identify the hub genes involved in myocardial isch-emia-reperfusion injury(MIRI).METHODS:Firstly,the rat MIRI related dataset GSE122020,E-MEXP-2098,and E-GEOD-4105 were downloaded from the database.Secondly,differentially expressed genes(DEGs)were screened from each dataset using the linear models for microarray data(limma)package,and robust DEGs were filtered using the robust rank aggregation(RRA)method.In addition,the surrogate variable analysis(SVA)package was used to merge all datas-ets into one,and merged DEGs were screened using the limma package.The common DEGs were obtained by taking the intersection of the two channels of DEGs.Next,the protein-protein interaction(PPI)network of common DEGs was con-structed,and the hub genes were identified using the density-maximizing neighborhood component(DMNC)algorithm.The receiver operating characteristic curve(ROC)was plotted to evaluate the diagnostic performance of the hub gene.Then,the mRNA and protein expression levels of hub genes were detected in the rat MIRI model,and the literature re-view analysis was carried out on the involvement of hub genes in MIRI.Finally,the gene set enrichment analysis(GSEA)was performed on hub gene to further reveal the possible mechanism in mediating MIRI.RESULTS:A total of 143 robust DEGs and 48 merged DEGs were identified.After taking the intersection of the two,48 common DEGs were obtained.In the PPI network of common DEGs,5 hub genes were screened out,namely MYC proto-oncogene bHLH transcription fac-tor(MYC),prostaglandin-endoperoxide synthase 2(PTGS2),heme oxygenase 1(HMOX1),caspase-3(CASP3),and plasminogen activator urokinase receptor(PLAUR).The ROC results showed that the area under the curve values for all hub genes were greater than 0.8.MYC,PTGS2,CASP3,and PLAUR showed high mRNA and protein expression in rat MIRI,while there was no difference in mRNA and protein expression for HMOX1.The literature review revealed that among the 5 hub genes,only PLAUR has not been reported to be involved in MIRI.The GSEA results for PLAUR indicat-ed that its functional enrichment mainly focused on pathways such as NOD-like receptor signaling pathway,P53 signaling pathway,Toll-like receptor signaling pathway,apoptosis,and fatty acid metabolism.CONCLUSION:MYC,PTGS2,CASP3,HMOX1,and PLAUR are involved in the pathological process of MIRI.PLAUR is a potential hub gene that can mediate MIRI by regulating pathways such as NOD like receptor signaling,P53 signaling,Toll like receptor signaling,cell apoptosis,and fatty acid metabolism.The results can provide reference for further investigation into the molecular mechanisms and therapeutic targets of MIRI.
10.Correlation between serum N-terminal pro-B-type natriuretic peptide level and echocardiographic parameters in patients with chronic Keshan disease
Ping LI ; Suqin YU ; Aiwei HE ; Yanling WANG ; Jianhua MA ; Yiming PANG ; Faqing CHEN ; Ping WANG ; Xiaoyan CHEN ; Li SU
Chinese Journal of Endemiology 2024;43(3):173-176
Objective:To study the correlation between serum N-terminal pro-B-type natriuretic peptide (NT-proBNP) level and echocardiographic parameters in patients with chronic Keshan disease, providing reference for diagnosis and prognosis evaluation of chronic Keshan disease.Methods:Ninety-nine patients with chronic Keshan disease who received standardized treatment at Jingchuan County People's Hospital in Pingliang City, Gansu Province from January to December 2020 were selected. Among them, 16 patients were classified as cardiac function grade Ⅱ according to New York Heart Association (NYHA), 69 as grade Ⅲ and 14 as grade Ⅳ. The patients underwent echocardiography and their serum NT-proBNP level was measured using fluorescence immunochromatography. The differences in serum NT-proBNP levels among patients with different cardiac function grades were compared, and the correlation between cardiac function grades, serum NT-proBNP level and echocardiographic parameters was analyzed.Results:The serum NT-proBNP levels in patients with cardiac function grades Ⅱ, Ⅲ, and Ⅳ were (1 107.26 ± 268.03), (2 125.98 ± 293.02), and (8 268.59 ± 2 659.50) pg/ml, respectively. The differences among the three groups were statistically significant ( F = 13.94, P < 0.001). The serum NT-proBNP level was positively correlated with cardiac function grades ( r = 0.44, P < 0.001), left ventricular end-diastolic diameter, left ventricular end-systolic diameter, and left atrial diameter ( r = 0.45, 0.52, 0.38, P < 0.001), and negatively correlated with fractional shortening and left ventricular ejection fraction ( r = - 0.39, - 0.46, P < 0.001). Conclusions:The serum NT-proBNP level in patients with chronic Keshan disease with different cardiac function grades is different, and is positively correlated with echocardiographic parameters reflecting the degree of cardiac structural and functional impairment. The NT-proBNP level may become an early diagnostic, grading, and prognostic indicator for chronic Keshan disease.

Result Analysis
Print
Save
E-mail