1.Optimization of Ovarian Tissue Vitrification Using Hydrogel Encapsulation and Magnetic Induction Nanowarming
Yu-Kun CAO ; Na YE ; Zheng LI ; Xin-Li ZHOU
Progress in Biochemistry and Biophysics 2025;52(2):464-477
ObjectiveFor prepubertal and urgently treated malignant tumor patients, ovarian tissue cryopreservation and transplantation represent more appropriate fertility preservation methods. Current clinical practices often involve freezing ovarian tissue with high concentrations of cryoprotectants (CPAs) and thawing with water baths. These processes lead to varying degrees of toxicity and devitrification damage to ovarian tissue. Therefore, this paper proposes optimized methods for vitrification of ovarian tissues based on sodium alginate hydrogel encapsulation and magnetic induction nanowarming technology. MethodsFirstly, the study investigated the effects of sodium alginate concentration, the sequence of hydrogel encapsulation and CPAs loading on vitrification efficiency of encapsulated ovarian tissue. Additionally, the capability of sodium alginate hydrogel encapsulation to reduce the required concentration of CPAs was validated. Secondly, a platform combining water bath and magnetic induction nanowarming was established to rewarm ovarian tissue under various concentrations of magnetic nanoparticles and magnetic field strengths. The post-warming follicle survival rate, antioxidant capacity, and ovarian tissue integrity were evaluated to assess the efficacy of the method. ResultsThe study found that ovarian tissue encapsulated with 2% sodium alginate hydrogel exhibited the highest follicle survival rate after vitrification. The method of loading CPAs prior to encapsulation proved more suitable for ovarian tissue cryopreservation, effectively reducing the required concentration of CPAs by 50%. A combination of 8 g/L Fe3O4 nanoparticles and an alternating magnetic field of 300 Gs showed optimal warming effectiveness for ovarian tissue. Combining water bath rewarming with magnetic induction nanowarming yielded the highest follicle survival rate, enhanced antioxidant capacity, and preserved tissue morphology. ConclusionSodium alginate hydrogel encapsulation of ovarian tissue reduces the concentration of CPAs required during the freezing process. The combination of magnetic induction nanowarming with water bath provides an efficient method ovarian tissue rewarming. This study offers novel approaches to optimize ovarian tissues vitrification.
2.Efficacy of Fufang Lingjiao Jiangya Pills with Different Proportions of Goat Horn Replacing Antelope Horn on Spontaneous Hypertensive Rats
Tengjian WANG ; Wanlu ZHAO ; Yang YU ; Yan LIU ; Kun CAO ; Zheyuan LIN ; Yue WU ; Lilan LUO ; Weizhi LAI ; Zhaohuan LOU ; Qiaoyan ZHANG ; Quanlong ZHANG ; Luping QIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):68-78
ObjectiveTo investigate the optimal ratio of goat horn replacing antelope horn in Fufang Lingjiao Jiangya pills and the blood pressure-lowering mechanism of this medicine. MethodsThe blood pressure-lowering efficacy of Fufang Lingjiao Jiangya pills with varying proportions of goat horn replacing antelope horn was evaluated on spontaneous hypertensive rats (SHR). In this experiment, 50 SHR rats were randomly grouped as follows: model (n=8), captopril (0.01 g·kg-1) (n=6), low-dose blank Fufang Lingjiao Jiangya pills (0.342 g·kg-1) (n=6), high-dose blank Fufang Lingjiao Jiangya pills (0.684 g·kg-1) (n=6), low-dose antelope horn-containing Fufang Lingjiao Jiangya pills (0.378 g·kg-1) (n=6), high-dose antelope horn-containing Fufang Lingjiao Jiangya pills (0.756 g·kg-1) (n=6), low-dose goat horn-containing Fufang Lingjiao Jiangya pills (0.378 g·kg-1) (n=6), and high-dose goat horn-containing Fufang Lingjiao Jiangya pills (0.756 g·kg-1) (n=6). Additionally, 8 WKY rats were used as the normal group. Drugs were administered by gavage for 4 weeks while an equal volume of distilled water was administered for the normal and model groups. Blood pressure was measured before administration, 3 h post administration, and biweekly thereafter. In the experiment for Fufang Lingjiao Jiangya pills with goat horn replacing antelope horn in different proportions, 48 SHR rats were randomly grouped as follows: model, blank Fufang Lingjiao Jiangya pills (0.684 g·kg-1), antelope horn-containing Fufang Lingjiao Jiangya pills (0.756 g·kg-1), 2× goat horn-containing Fufang Lingjiao Jiangya pills (0.824 g·kg-1), 4× goat horn Fufang Lingjiao Jiangya pills (0.969 g·kg-1), and 6× goat horn Fufang Lingjiao Jiangya pills (1.112 g·kg-1). The normal group included 8 WKY rats, and the normal group and model group received an equal volume of distilled water. The treatment lasted for 2 weeks, and blood pressure was recorded at various time points (pre-administration, 3 h post administration, and on days 4, 7, 10, and 14 of administration). Serum levels of angiotensin-converting enzyme (ACE), angiotensin Ⅱ(Ang Ⅱ), renin, and interleukin-6 (IL-6) were measured by enzyme-linked immunosorbent assay. Histopathological changes in the heart, kidney, and thoracic aorta were observed by hematoxylin-eosin staining. The protein levels of ACE2, angiotensin Ⅱ type 1 receptor (AT1R), and angiotensinogen (AGT) in the kidney tissue were determined by Western blot, while the expression of nuclear factor (NF)-κB p65 and Toll-like receptor 4 (TLR4) in the thoracic aorta tissue was assessed by immunohistochemistry. ResultsCompared with the model group, all treatment groups showed lowered blood pressure (P<0.05, P<0.01), and the 6× goat horn-containing Fufang Lingjiao Jiangya pills group showed consistent blood pressure-lowering effect with the antelope horn-containing Fufang Lingjiao Jiangya pills group. Compared with the normal group, the model group showed elevated serum levels of ACE, Ang Ⅱ, renin, and IL-6, while the elevations were declined in the Fufang Lingjiao Jiangya pills groups (P<0.05, P<0.01). Pathological changes in the heart, kidney, and thoracic aorta were alleviated in all the treatment groups, with the 6× goat horn- and antelope horn-containing Fufang Lingjiao Jiangya pills groups exhibited the best effect. Western blot and immunohistochemistry results showed that all the treatment groups exhibited down-regulated protein levels of AT1R, AGT, NF-κB p65, and TLR4 and up-regulated protein levels of ACE2 (P<0.05, P<0.01) compared with model group, with the 6×goat horn- and antelope horn-containing Fufang Lingjiao Jiangya pills groups showcasing the best effect. ConclusionReplacing antelope horn with 6×goat horn in Fufang Lingjiao Jiangya pills can achieve consistent blood pressure-lowering effect with the original prescription. The prescription may exert the effect by inhibiting the renin-angiotensin-aldosterone system (RAAS) and TLR4/NF-κB signaling pathways.
3.Effect of Folic Acid-modified Crebanine Polyethylene Glycol-polylactic Acid Hydroxyacetic Acid Copolymer Nanoparticles Combined with Ultrasonic Irradiation on Subcutaneous Tumor Growth of Liver Cancer in Mice
Rui PAN ; Junze TANG ; Hailiang ZHANG ; Kun YU ; Xiaoyu ZHAO ; Xin CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):217-225
ObjectiveTo investigate the effect of folic acid-modified crebanine polyethylene glycol-polylactic acid hydroxyacetic acid copolymer(PEG-PLGA) nanoparticles(FA-Cre@PEG-PLGA NPs, hereinafter referred to as NPs) combined with ultrasonic irradiation on subcutaneous tumor of liver cancer in Kunming(KM) mice. MethodsEighty-four healthy male KM mice were utilized to establish a subcutaneous tumor model of mouse hepatocellular carcinoma with H22 cells, then mice were randomly divided into model group, placebo group, hydroxycamptothecin group(8 mg∙kg-1), low, medium and high dose crebanine raw material groups(2, 2.5, 3 mg∙kg-1, hereinafter referred to as the low, medium and high dose crebanine groups, respectively), low, medium and high dose NPs groups(2, 2.5, 3 mg∙kg-1), and low, medium and high dose NPs combined with ultrasonic irradiation groups(2, 2.5, 3 mg∙kg-1, hereinafter referred to as the low, medium and high dose combination groups, respectively). The corresponding doses of drugs were administered via tail vein injection, the model group received no treatment, while the placebo group was injected with an equivalent amount of normal saline. Dosing was conducted for a total of 10 times on alternate days. The body mass of the mice was monitored, and parameters such as body mass change rate, thymus index, spleen index, tumor volume, tumor weight, relative tumor growth rate(T/C), and tumor inhibition rate(TGI) were calculated. Pathological changes in liver and kidney tissues as well as the tumor were observed by hematoxylin-eosin(HE) staining. Additionally, the levels of aspartate aminotransferase(AST), alanine aminotransferase(ALT), blood urea nitrogen(BUN) and creatinine(CREA) in serum of mice were detected by biochemical method. Furthermore, the effect of ultrasound on the distribution of NPs in subcutaneous tumors of mouse hepatocellular carcinoma was observed by in vivo imaging technique. ResultsAmong different treatment methods, the combination of NPs and ultrasound irradiation had the best therapeutic effect. Compared with the model group, the body mass growth rates of mice in the medium and high combination groups decreased, while the thymus index and spleen index increased, but there was no statistically significant difference in serum AST, ALT, BUN and CREA levels, indicating that NPs combined with ultrasound irradiation had little effect on the normal physiological state of the body, oth groups had TGI>40% and T/C<60%, indicating a clear anti-tumor effect. Pathological analysis showed that compared with the NPs groups, the combination groups exhibited varying degrees of necrosis in tumor cells, accompanied by less damage to the liver and kidneys. In vivo imaging of small animals showed that compared with the high dose NPs group, the high dose combination group had stronger tumor targeting ability(P<0.01). ConclusionNPs combined with ultrasonic irradiation can not only effectively targeted the drug to the tumor site, inhibit the subcutaneous tumor growth of mouse liver cancer, but also decrease damage to liver and kidney tissues.
4.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
5.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
6.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
7.Targeting effect and anti-tumor mechanism of folic acid-modified crebanine nanoparticles combined with ultra-sound irradiation on M109 cells in vitro and in vivo
Hailiang ZHANG ; Xiaoyu ZHAO ; Jiahua MEI ; Rui PAN ; Junze TANG ; Kun YU ; Rui XUE ; Xiaofei LI ; Xin CHENG
China Pharmacy 2025;36(14):1730-1736
OBJECTIVE To investigate the targeting effect of folic acid-modified crebanine nanoparticles (FA-Cre@PEG- PLGA NPs, hereinafter referred to as “NPs”) combined with ultrasound irradiation on M109 cells in vitro and in vivo after administration, and explore the anti-tumor mechanism. METHODS CCK-8 assay was used to detect the inhibitory effect of NPs combined with ultrasound irradiation on the proliferation of M109 cells, and the best ultrasound time was selected. Using human lung cancer A549 cells as a control, the targeting of NPs combined with ultrasound irradiation to M109 cells was evaluated by free folic acid blocking assay and cell uptake assay. The effects of NPs combined with ultrasound irradiation on the migration, invasion, apoptosis, cell cycle and reactive oxygen species (ROS) levels of M109 cells were detected by cell scratch test, Transwell chamber test and flow cytometry at 1 h after 958401536@qq.com administration; the changes of mitochondrial membrane potential (MMP) were observed by fluorescence inverted microscope. A mouse subcutaneous tumor model of M109 cells was constructed, and the in vivo tumor targeting of NPs combined with ultrasound irradiation was investigated by small animal in vivo imaging technology. RESULTS NPs combined with ultrasound irradiation could significantly inhibit the proliferation of M109 cells, and the optimal ultrasound time was 1 h after administration. The free folic acid could antagonize the inhibitory effect of NPs on the proliferation of M109 cells, and combined with ultrasound irradiation could partially reverse this antagonism. Compared with A549 cells, the uptake rate of NPs in M109 cells was significantly higher (P<0.01), and ultrasound irradiation could promote cellular uptake. NPs combined with ultrasound irradiation could inhibit the migration and invasion of M109 cells and block the cell cycle in the G0/G1 and G2/M phases. Compared with control group, the apoptosis rate of M109 cells and ROS level were increased significantly (P<0.01), while the MMP decreased significantly (P<0.01) in the different concentration (100, 200, 300 μg/mL) groups of M109 cells. Compared with the mice in non-ultrasound group, the fluorescence intensity and tumor-targeting index of the tumor site in the 0 h ultrasound group were significantly enhanced (P<0.05 or P<0.01). CONCLUSIONS NPs combined with ultrasound irradiation have a strong targeting effect on M109 cells in vitro and in vivo, the anti-tumor mechanism includes inhibiting cell migration and invasion, blocking cell cycle, and inducing apoptosis.
8.Transcriptomic Analysis of Wuzi Yanzongwan on Testicular Spermatogenic Function in Semi-castrated Male Mice
Dixin ZOU ; Yueyang ZHANG ; Xuedan MENG ; Wei LU ; Shuang LYU ; Fanjun ZENG ; Kun CHEN ; Chang LIU ; Zhongxiu ZHANG ; Yu DUAN ; Yihang DAI ; Zhaoyi WANG ; Zhimin WANG ; Ruichao LIN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(1):61-69
ObjectiveTo screen out the transcriptomes related to the intervention of Wuzi Yanzongwan on the spermatogenic function of semi-castrated male mice, and to explore its potential mechanism in the intervention of the progress of low spermatogenic function. MethodBalb/c mice were randomly divided into sham-operated group, model group, testosterone propionate group(0.2 mg·kg-1·d-1, intramuscular injection) and Wuzi Yanzongwan group(1.56 g·kg-1·d-1, intragastric administration) according to body weight, with 12 mice in each group. The right testicle and epididymis were extracted from the model group and the drug administration group to construct the semi-castrated model of low spermatogenic function, while the fur and the right scrotum of the sham-operated group were only cut and immediately sterilized and sutured. At the end of the intervention, hematoxylin-eosin(HE) staining was used to observe the histopathology of testis, enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of serum testosterone(T), luteinizing hormone(LH) and follicle stimulating hormone(FSH). The sperm count and motility of epididymis were measured by automatic sperm detector of small animal. Transcriptomic microarray technology was used to detect the mRNA expression level of testicular tissue in each group, the transcriptome of genes related to the regulation of Wuzi Yanzongwan was screened, and three mRNAs were selected for Real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) to verify the transcriptome data. Through the annotation analysis of Gene Ontology(GO) and the signaling pathway analysis of Kyoto Encyclopedia of Genes and Genomes(KEGG), the related functions of drugs regulating transcriptome were analyzed. ResultCompared with the sham-operated group, the testicular tissue of mice in the model group showed spermatogenic injury, contraction and vacuolization of the seminiferous tubules, reduction of spermatogenic cells at all levels, widening of the interstitial space, obstruction of spermatogonial cell development and other morphological abnormalities, and serum T significantly decreased, LH significantly increased(P<0.01), and FSH elevated but no statistically significant difference, the count and vitality of epididymal sperm significantly decreased(P<0.01). There were 882 differentially expressed mRNAs in the testicular tissues, of which 565 were up-regulated and 317 were down-regulated. Cluster analysis showed that these differentially expressed mRNA could effectively distinguish between the sham-operated group and the model group. Compared with the model group, the damage to testicular tissue in the Wuzi Yanzongwan group was reduced, the structure of the seminiferous tubules was intact, vacuolization was reduced, and the number of spermatogenic cells at all levels was significantly increased and arranged tightly. The serum T significantly increased, LH significantly decreased(P<0.01), and FSH decreased but the difference was not statistically significant. The count and vitality of sperm in the epididymis were significantly increased(P<0.01). Moreover, Wuzi Yanzongwan could regulate 159 mRNA levels in the testes of semi-castrated mice, of which 32 were up-regulated and 127 were down-regulated, and the data of the transcriptome assay was verified to be reliable by Real-time PCR. GO and KEGG analysis showed that the transcriptome functions regulated by Wuzi Yanzongwan were involved in the whole cell cycle process of sperm development such as sex hormone production of interstitial cells in testis, renewal, differentiation, metabolism, apoptosis and signal transduction of spermatogenic cells, and were closely related to the biological behaviors of signaling pathways such as spermatogenic stem cell function, endoplasmic reticulum protein processing and metabolic program. ConclusionWuzi Yanzongwan can effectively improve the low spermatogenic function of semi-castrated male mice, and its mechanism may be related to the regulation of testicular transcriptional regulatory network, the synthesis of sex hormones in testicular interstitial cells, the function of spermatogenic stem cells, the whole cell cycle process of spermatogenesis, as well as the expression of endoplasmic reticulum protein processing and metabolic program related genes transcription.
9.Protective Effect of Liuwei Dihuangwan on Mitochondrial Damage in AD Model of Caenorhabditis Elegans
Jinfeng ZHANG ; Yuliang TONG ; Jiapeng WANG ; Ting SU ; Deping ZHAO ; Hao YU ; Kun ZUO ; Ziyue ZHU ; Meiling JIN ; Ning ZHANG ; Xia LEI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(3):18-25
ObjectiveTo investigate the protective effect of the extract of Liuwei Dihuangwan (LW) on mitochondrial damage in the Alzheimer's disease (AD) model of Caenorhabditis elegans (C. elegans). MethodC. elegans transfected with human β-amyloid protein (Aβ) 1-42 gene was used as an AD model. The rats were divided into blank group, model group, metformin group (50 mmol·L-1), and low, medium, and high dose (1.04, 2.08, 4.16 g·kg-1) LW groups. Behavioral methods were used to observe the sensitivity of 5-hydroxytryptamine (5-HT) in nematodes. Western blot was used to detect the expression of Aβ in nematodes. Total ATP content in nematodes was detected by the adenine nucleoside triphosphate (ATP) kit, and mitochondrial membrane potential was detected by the JC-1 method. In addition, the mRNA expression of Aβ expression gene (Amy-1), superoxide dismutase-1 (SOD-1), mitochondrial transcription factor A homologous gene-5 (HMG-5), mitochondrial power-associated protein 1 (DRP1), and mitochondrial mitoprotein 1 (FIS1) was detected by real-time fluorescence quantitative polymerase chain reaction (RT-PCR). ResultThe extract of LW could reduce the hypersensitivity of the AD model of nematodes to exogenous 5-HT (P<0.05) and delay the AD-like pathological characteristics of hypersensitivity to exogenous 5-HT caused by toxicity from overexpression of Aβ in neurons of the AD model of nematodes. Compared with the blank group, in the model group, the mRNA expression of Aβ protein and Amy-1 increased (P<0.01), and the mRNA expression of SOD-1 and HMG-5 decreased (P<0.01). The mRNA expression of DRP1 and FIS1 increased (P<0.01), and the level of mitochondrial membrane potential decreased (P<0.05). The content of ATP decreased (P<0.01). Compared with the model group, in the positive medicine group and medium and high dose LW groups, the mRNA expression of Aβ protein and Amy-1 decreased (P<0.05,P<0.01), and the mRNA expression of SOD-1 and HMG-5 increased (P<0.01). The mRNA expression of DRP1 decreased (P<0.05,P<0.01), and that of FIS1 decreased (P<0.01). The level of mitochondrial membrane potential increased (P<0.01), and the content of ATP increased (P<0.05,P<0.01). ConclusionThe extract of LW may enhance the antioxidant ability of mitochondria, protect mitochondrial DNA, reduce the fragmentation of mitochondrial division, repair the damaged mitochondria, adjust the mitochondrial membrane potential, restore the level of neuronal ATP, and reduce the neuronal damage caused by Aβ deposition.
10.Study on the potential allergen and mechanism of pseudo-allergic reactions induced by combined using of Reduning injection and penicillin G injection based on metabolomics and bioinformatics
Yu-long CHEN ; You ZHAI ; Xiao-yan WANG ; Wei-xia LI ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Xiao-fei CHEN ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Kun LI ; Jin-fa TANG ; Ming-liang ZHANG
Acta Pharmaceutica Sinica 2024;59(2):382-394
Based on the strategy of metabolomics combined with bioinformatics, this study analyzed the potential allergens and mechanism of pseudo-allergic reactions (PARs) induced by the combined use of Reduning injection and penicillin G injection. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). Based on UPLC-Q-TOF/MS technology combined with UNIFI software, a total of 21 compounds were identified in Reduning and penicillin G mixed injection. Based on molecular docking technology, 10 potential allergens with strong binding activity to MrgprX2 agonist sites were further screened. Metabolomics analysis using UPLC-Q-TOF/MS technology revealed that 34 differential metabolites such as arachidonic acid, phosphatidylcholine, phosphatidylserine, prostaglandins, and leukotrienes were endogenous differential metabolites of PARs caused by combined use of Reduning injection and penicillin G injection. Through the analysis of the "potential allergen-target-endogenous differential metabolite" interaction network, the chlorogenic acids (such as chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, and isochlorogenic acid A) and

Result Analysis
Print
Save
E-mail