1.Effect and Mechanism of Menispermi Rhizoma Total Alkaloids on Antiviral Infection
Xuejiao WANG ; Qiqi LI ; Yanli YU ; Xia LIU ; Min LI ; Zhe LIU ; Xin JIA ; Yao WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(10):37-44
ObjectiveTo investigate the antiviral effect of Menispermi Rhizoma total alkaloids and its relationship with the type Ⅰ interferon (IFN-Ⅰ) signaling pathway. MethodThe effects of Menispermi Rhizoma total alkaloids on the intracellular replication of influenza A virus (H1N1), vesicular stomatitis virus (VSV), and cerebral myocarditis virus (EMCV) were detected by fluorescent inverted microscope, flow cytometry, Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), and Western blot. A mouse model infected with H1N1 was constructed, and the mice were divided into a control group, H1N1 model group, Menispermi Rhizoma total alkaloids groups (10, 20, 30 mg·kg-1), and oseltamivir group (40 mg·kg-1), so as to study the effects on the weight and survival rate of infected mice. Real-time PCR was used to detect the activation effect of Menispermi Rhizoma total alkaloids on the IFN-Ⅰ pathway in cells, and the relationship between the antiviral effect of Menispermi Rhizoma total alkaloids in IFNAR1 knockout A549 cells (IFNAR1-/--A549) and IFN-Ⅰ pathway was detected. ResultCompared with the control group, the virus proliferated significantly in the model group (P<0.01). Compared with the model group, Menispermi Rhizoma total alkaloids could significantly inhibit the replication of H1N1, VSV, and EMCV in vitro (P<0.01), inhibit the weight loss of the mice infected with the H1N1 in vivo, and improve the survival rate of mice (P<0.05). In addition, Menispermi Rhizoma total alkaloids activated the IFN-I pathway and relied on this pathway to exert the function of antiviral infection. ConclusionMenispermi Rhizoma total alkaloids exert antiviral effects in vivo and in vitro by activating the IFN-Ⅰ pathway.
2.Based on the interaction between supramolecules of traditional Chinese medicine and enterobacteria to explore the material basis of combination of Rhei Radix et Rhizoma - Coptidis Rhizoma
Xiao-yu LIN ; Ji-hui LU ; Yao-zhi ZHANG ; Wen-min PI ; Zhi-jia WANG ; Lin-ying WU ; Xue-mei HUANG ; Peng-long WANG
Acta Pharmaceutica Sinica 2024;59(2):464-475
Based on the interaction between supramolecule of traditional Chinese medicine and enterobacteria, the material basis of
3.Protective effect and mechanism of acellular nerve allografts combined with electroacupuncture on spinal ganglia in rats with sciatic nerve injury
Ze-Yu ZHOU ; Yun-Han MA ; Jia-Rui LI ; Yu-Meng HU ; Bo YUAN ; Yin-Juan ZHANG ; Xiao-Min YU ; Xiu-Mei FU
Acta Anatomica Sinica 2024;55(2):143-149
Objective To investigate the protective effect and mechanism of acellular nerve allografts(ANA)combined with electroacupuncture on spinal ganglia in rats with sciatic nerve injury(SNI).Methods Totally 50 male adult SD rats were randomly selected for this experiment.Ten rats were prepared for the ANA.Forty male SD rats were randomly divided into normal group,model group,ANA group and combinational group,with 10 rats in each group.The SNI model was established by cutting off the nerves 10 mm at the 5 mm on the inferior border of piriformis after separating the right sciatic nerves.The rats in the ANA group were bridged with ANA to the two broken ends of injured nerves.The rats in the combinational group were treated with electroacupuncture 2 days after ANA bridging,Huantiao(GB30)and Yanglingquan(GB34)were performed as the acupuncture points,each electroacupuncture lasted 15 minutes and 7 days as a course of treatment,4 courses in all.Sciatic nerve conduction velocity was measured by electrophysiology to evaluate the regeneration of damaged axons.Morphology of spinal ganglia was observed by Nissl staining.The expression of nerve growth factor(NGF)and brain-derived neurotrophic factor(BDNF)were detected by Western blotting and immunofluorescent staining.Results Compared with the normal group,the sciatic nerve conduction velocity in model group decreased significantly(P<0.01),Nissl bodies in neurons of spinal ganglia were swollen and dissolved,with incomplete structure and the number decreased dramatically(P<0.01),while the level of NGF and BDNF also decreased significantly(P<0.01).Compared with the model group,the sciatic nerve conduction velocity in ANA and combinational groups strongly increased(P<0.01),the damage of Nissl bodies in neurons of spinal ganglia reduced and the number obviously increased(P<0.01),the level of NGF and BDNF increased considerably(P<0.01).Compared with the ANA group,the sciatic nerve conduction velocity in combinational group increased significantly(P<0.01),the morphology of Nissl bodies in neurons of spinal ganglia were more regular and the number increased(P<0.01),moreover,the level of NGF also increased significantly(P<0.01).Conclusion ANA combined with electroacupuncture can enhance the sciatic nerve conduction velocity,improve the morphology of neurons in spinal ganglia and play a protective effect on spinal ganglia.The mechanism can be related to the higher expression of NGF and BDNF proteins,especially the expression of NGF protein.
4.Identification of TEAD1 Transcripts and Functional Analysis in Chicken Preadipocytes
Min PENG ; Hu XU ; Zi-Qiu JIA ; Qing-Zhu YANG ; Lin PAN ; Wei-Yu WANG ; Ling-Zhe KONG ; Ying-Ning SUN
Progress in Biochemistry and Biophysics 2024;51(1):215-229
ObjectiveAlthough expression of the TEAD1 protein in preadipocytes has been established, its function remains unclear. In this study, we sought to detect transcripts of TEAD1 in chicken and to examine the effects of this protein on the proliferation, migration, apoptosis, and differentiation of immortalized chicken preadipocyte cell lines (ICP1). MethodsThe full-length sequence of the TEAD1 gene was cloned and the two transcripts were subjected to bioinformatics analysis. The subcellsular localization of TEAD1 transcripts was determined based on indirect immunofluorescence. The effects of TEAD1 transcripts overexpression on the proliferation of ICP1 cells were examined by RT-qPCR, CCK-8, and EdU assays; the effects of TEAD1 transcripts on ICP1 cells migration were examined based on the scratch test; and the effects of TEAD1 transcripts overexpression on ICP1 cells apoptosis were analyzed using apoptosis-Hoechst staining and RT-qPCR. The expression of TEAD1 transcripts in different tissues, cells lines, and ICP1 at different periods of differentiation was analyzed by RT-qPCR. The effects of TEAD1 transcripts overexpression on lipid droplet accumulation and adipogenic-related gene expression in ICP1 cells were analyzed based on Oil Red O and BODIPY staining, RT-qPCR, Western blot, and dual-luciferase reporter gene assays. Finally, the content of triglyceride (TG) was measured in TEAD1 overexpressed ICP1 cells. ResultsThe full-length TEAD1 was cloned and two TEAD1 transcripts were identified. The TEAD1-V1 protein was found to be localized primarily in the cell nucleus, whereas the TEAD1-V2 protein is localized in the cell cytoplasm and nucleus. The overexpression of both TEAD1-V1 and TEAD1-V2 significantly inhibited the proliferation of ICP1 cells. Whereas the overexpression of TEAD1-V1 promoted ICP1 cell migration, the overexpression of TEAD1-V2 had no significant effects on ICP1 migration; the overexpression of both TEAD1-V1 and TEAD1-V2 significantly promoted the apoptosis of ICP1 cells. We found that the different transcripts of TEAD1 have similar expression pattern in different tissues and cells lines. During induced preadipocyte differentiation, the expression of these genes initially declined, although subsequently increased. Overexpression of TEAD1-V1 promoted a significant reduction in lipid droplet formation and inhibited C/EBPα expression during the differentiation of ICP1 cells (P<0.05). However, the overexpression of TEAD1-V2 had no significant effect on lipid droplet accumulation or the expression of adipogenic-related proteins (P>0.05). Overexpression of TEAD1-V1 significantly decreased triglyceride content in ICP1 cells (P<0.05), while overexpression of TEAD1-V2 had no effect on triglyceride content in ICP1 cells (P>0.05). ConclusionIn this study, for the first time, identified two TEAD1 transcripts. Overexpressed transcripts TEAD1-V1 and TEAD1-V2 both inhibited the proliferation of chicken preadipocytes and promoted apoptosis of chicken preadipocytes. TEAD1-V1 inhibited the differentiation of preadipocytes and promoted the migration of preadipocytes, while TEAD1-V2 had no effect on the differentiation and migration of preadipocytes.
5.Development of the robotic digestive endoscope system and an experimental study on mechanistic model and living animals (with video)
Bingrong LIU ; Yili FU ; Kaipeng LIU ; Deliang LI ; Bo PAN ; Dan LIU ; Hao QIU ; Xiaocan JIA ; Jianping CHEN ; Jiyu ZHANG ; Mei WANG ; Fengdong LI ; Xiaopeng ZHANG ; Zongling KAN ; Jinghao LI ; Yuan GAO ; Min SU ; Quanqin XIE ; Jun YANG ; Yu LIU ; Lixia ZHAO
Chinese Journal of Digestive Endoscopy 2024;41(1):35-42
Objective:To develop a robotic digestive endoscope system (RDES) and to evaluate its feasibility, safety and control performance by experiments.Methods:The RDES was designed based on the master-slave control system, which consisted of 3 parts: the integrated endoscope, including a knob and button robotic control system integrated with a gastroscope; the robotic mechanical arm system, including the base and arm, as well as the endoscopic advance-retreat control device (force-feedback function was designed) and the endoscopic axial rotation control device; the control console, including a master manipulator and an image monitor. The operator sit far away from the endoscope and controlled the master manipulator to bend the end of the endoscope and to control advance, retract and rotation of the endoscope. The air supply, water supply, suction, figure fixing and motion scaling switching was realized by pressing buttons on the master manipulator. In the endoscopy experiments performed on live pigs, 5 physicians each were in the beginner and advanced groups. Each operator operated RDES and traditional endoscope (2 weeks interval) to perform porcine gastroscopy 6 times, comparing the examination time. In the experiment of endoscopic circle drawing on the inner wall of the simulated stomach model, each operator in the two groups operated RDES 1∶1 motion scaling, 5∶1 motion scaling and ordinary endoscope to complete endoscopic circle drawing 6 times, comparing the completion time, accuracy (i.e. trajectory deviation) and workload.Results:RDES was operated normally with good force feedback function. All porcine in vivo gastroscopies were successful, without mucosal injury, bleeding or perforation. In beginner and advanced groups, the examination time of both RDES and ordinary endoscopy tended to decrease as the number of operations increased, but the decrease in time was greater for operating RDES than for operating ordinary endoscope (beginner group P=0.033; advanced group P=0.023). In the beginner group, the operators operating RDES with 1∶1 motion scaling or 5∶1 motion scaling to complete endoscopic circle drawing had shorter completion time [1.68 (1.40, 2.17) min, 1.73 (1.47, 2.37) min VS 4.13 (2.27, 5.16) min, H=32.506, P<0.001], better trajectory deviation (0.50±0.11 mm, 0.46±0.11 mm VS 0.82±0.26 mm, F=38.999, P<0.001], and less workload [42.00 (30.00, 50.33) points, 43.33 (35.33, 54.00) points VS 52.67 (48.67, 63.33) points, H=20.056, P<0.001] than operating ordinary endoscope. In the advanced group, the operators operating RDES with 1∶1 or 5∶1 motion scaling to complete endoscopic circle drawing had longer completion time than operating ordinary endoscope [1.72 (1.37, 2.53) min, 1.57 (1.25, 2.58) min VS 1.15 (0.86, 1.58) min, H=13.233, P=0.001], but trajectory deviation [0.47 (0.13, 0.57) mm, 0.44 (0.39, 0.58) mm VS 0.52 (0.42, 0.59) mm, H=3.202, P=0.202] and workload (44.62±21.77 points, 41.24±12.57 points VS 44.71±17.92 points, F=0.369, P=0.693) were not different from those of the ordinary endoscope. Conclusion:The RDES enables remote control, greatly reducing the endoscopists' workload. Additionally, it gives full play to the cooperative motion function of the large and small endoscopic knobs, making the control more flexible. Finally, it increases motion scaling switching function to make the control of endoscope more flexible and more accurate. It is also easy for beginners to learn and master, and can shorten the training period. So it can provide the possibility of remote endoscopic control and fully automated robotic endoscope.
6.Effect of maternal emotional symptoms on emotional and behavioral problems in preschool children
ZHU Min, ZHA Jinhong, JIA Liyuan, LI Ruoyu, YU Min, HE Haiyan, WAN Yuhui
Chinese Journal of School Health 2024;45(7):993-997
Objective:
To explore the mediating role of psychological and physical aggression in the association between maternal emotional symptoms with emotional and behavioral problems in preschool children, so as to provide references for effective intervention of risk factors related to childrens emotional and behavioral problems.
Methods:
A longitudinal study was conducted to select 12 kindergarten children and their mothers in Wuhu City, Anhui Province by using stratified clustering sampling. The baseline survey was carried out in June 2021, followed up every six months, and a total of 3 followups were administered. Totally 853 valid questionnaires of junior class children were included by the survey data from baseline, second and thirl followups. The Depression Anxiety and Stress Scale-21 (DASS-21), the Parent-Child Conflict Tactics Scales (CTSPC) and the Strength and Difficulties Questionnaire (SDQ) were used to measure maternal emotional symptoms, psychological and physical aggression, and childrens emotional and behavioral problems, respectively.
Results:
The physical aggression of mothers towards children in boys was higher than in girls (t=3.53, P<0.05). The results of correlation analysis showed that maternal depressive symptoms were positively correlated with psychological aggression, physical aggression and childrens SDQ scores (r=0.20, 0.21, 0.18, P<0.01), maternal anxiety symptoms were positively correlated with psychological aggression, physical aggression and childrens SDQ scores (r=0.24, 0.22, 0.10, P<0.01), respectively; maternal stress symptoms were positively correlated with psychological aggression, physical aggression. The SDQ scores were positively correlated (r=0.26, 0.25, 0.18, P<0.01), and the scores of maternal psychological aggression and physical aggression were positively correlated with the SDQ scores of children (r=0.12, 0.16, P<0.01). The mediating analysis showed that after controlling for related confounding factors, psychological aggression played a partial mediating effect in the association between maternal depressive symptoms and childrens emotional and behavioral problems, and the mediating effect ratio was 8.05%. Physical aggression played a partial mediating effect in the association between maternal depression, anxiety and stress symptoms and childrens emotional and behavioral problems, which were 15.94%, 11.73% and 12.54% (P<0.05), respectively.
Conclusions
Psychological and physical aggression play mediating roles in the association between maternal emotional symptoms and childrens emotional and behavioral problems, and actively improving maternal emotional symptoms and their childrens discipline methods can help reduce the occurrence of emotional and behavioral problems in preschool children.
7.Establishment of Rat Karoshi Model and Model-based Proteomic and Metabolomic Analyses of Energy Metabolism and Oxidative Stress
Jia-Min LI ; Rui-Bing SU ; Xiao-Jun YU ; Yong-Xia ZHENG
Progress in Biochemistry and Biophysics 2024;51(8):1935-1949
ObjectiveKaroshi, death from overwork, is a serious problem with unclear identification standards and mechanisms. This study aims to establish a karoshi rat model by integrating weight-bearing swimming and sleep deprivation. This model will enable us to investigate the adverse effects of acute physical and mental fatigue on cardiac functions and explore the response mechanisms to overwork using integrated omics approaches, specifically metabonomics and proteomics. MethodsThe experimental design involved healthy male sprague-dawley (SD) rats subjected to weight-bearing swimming and sleep deprivation for 7 d. The rats were monitored for changes in physiological function indexes, including electrocardiogram and respiration. Protein digestion, iTRAQ labeling, and quantitative data analyses were performed to determine differentially expressed proteins (DEPs). Additionally, GC-MS analysis was conducted to identify differential metabolites. The integration analysis of differential metabolites and proteins shared by the fatigue group and the overwork group was performed to construct a relevant metabolic pathway network and integrate the proteomics and metabolomics data. Statistical analysis was carried out using one-way ANOVA and Duncan’s multiple range t-tests. ResultsThe rats subjected to weight-bearing swimming and sleep deprivation showed various physical and behavioral changes associated with fatigue, including hair disorder, decreased muscle tension, reduced food intake, and weight loss. Analysis of cardiac functions revealed cardiac hypertrophy and heart failure in the fatigue and karoshi groups, as evidenced by changes in heart color, myocardial fiber structure, heart rate, respiratory rate, and cardiac ultrasound measurements. Metabolomics analysis using GC-MS identified several differential metabolites in response to overwork, including amino acids involved in various metabolic pathways. Proteomic analysis using iTRAQ technology identified DEPs in the fatigue and karoshi groups, with a subset of DEPs shared by both groups. The GO analysis revealed that the up-regulated DEPs were primarily associated with mitochondria and peroxisomes in the cellular component category. The Reactome analysis further highlighted the enrichment of DEPs in the transfer of ferriheme from methemoglobin to hemopexin pathway. Integration analysis of the DEPs and differential metabolites revealed the activation of autophagy, increased mitochondrial oxidative phosphorylation, enhanced branched-chain amino acid degradation, and altered peroxisomal β-oxidation. These findings suggested complex metabolic adaptations to meet the increased energy demands during overwork while also dealing with oxidative stress. Furthermore, the reprogramming of energy metabolism was observed, with upregulation of fatty acid β-oxidation enzymes and glycolysis-related enzymes in the fatigue group, indicating a shift towards glucose metabolism. In contrast, the karoshi group showed a decreased dependence on fatty acids as an energy source and increased utilization of glucose. The model proposed in this study highlights the interconnected metabolic changes involving mitochondria, peroxisomes, and lysosomes in response to overwork. The findings contribute to our understanding of the mechanisms involved in overwork-related pathologies and provide a basis for further research in the field of karoshi. ConclusionOverall, metabolic reprogramming might provide sufficient energy to the heart, alleviate oxidative stress and damage to cardiac cells in response to excessive exertion and fatigue. Our findings provide an insight into response mechanism to overwork death and lay a foundation for further research on overwork death.
8.Correlation of CD200-CD200R axis and diseases and its research progress
Han XU ; Yu-xin BI ; Gui-xia LI ; Jian LI ; Liu-li WANG ; Rui-jia HAO ; Xue-min ZHENG ; Rui-jing HUANG ; Jin HAN ; Fei LI ; Gen-bei WANG
Acta Pharmaceutica Sinica 2024;59(4):822-830
CD200 and its receptor CD200R constitute an endogenous inhibitory signal. The binding of CD200 and CD200R can regulate the immune response to pathogenic stimuli, which has received much attention in recent years. It has been found that CD200-CD200R is involved in the regulation of many kinds of pathological inflammation, including autoimmune diseases, cardiac cerebrovascular disease, infection and tumor. This paper reviews the protein structure, distribution, expression, biological function of CD200-CD200R and the correlation with diseases, and analyses the current status and development ideas of CD200-CD200R as drug targets. It aims to provide theoretical support for new drug research and development based on this target.
9.Effects of Quorum Sensing Molecules on The Immune System
Wen-Min MA ; Xuan-Qi CHEN ; Hong-Xia MA ; Wen-Hui ZHANG ; Ling-Cong KONG ; Yu-Jia ZHOU ; Yuan-Yuan HU ; Yu JIA
Progress in Biochemistry and Biophysics 2024;51(11):2853-2867
In recent years, the development of host-acting antibacterial compounds has gradually become a hotspot in the field of anti-infection. Through research on the interaction mechanism between hosts and pathogenic bacteria, it has been found that the immune system is one of the key targets of host-acting antibacterial compounds. There is a communication system called the quorum sensing system in microorganisms, which mainly adjusts the structure of multi-microbial community and coordinates the group behavior. When the quorum sensing molecules secreted by microorganisms reach a threshold concentration, the quorum sensing system is activated and the overall gene expression of the microorganism is changed. In addition to regulating the density of microorganisms, quorum sensing molecules can also act as a link between pathogenic microorganisms and hosts, entering the host immune system and playing a role in affecting the morphological structure of immune cells, secreting cytokines, and inducing apoptosis, leading to host immune injury and causing host immune dysfunction.The key mechanism of 3-oxo-C12-HSL and other acyl-homoserine lactone (AHL) molecules in the innate immune system has been extensively studied. The lipid solubility allows AHLs to pass through the plasma membrane of host immune cells easily and induce dissolution of lipid domains. Then, it acts through signaling pathways such as p38MAPK and JAK-STAT, further influencing the immune cell’s defense response to bacteria and potentially leading to cell apoptosis. Additionally, the human lactonase paraoxonase 2, which can degrade3-oxo-C12-HSL, has been found in macrophage. It acts as an immune regulator that promotes macrophage phagocytosis of pathogens and is hypothesized to have the ability to reduce bacterial resistance. The mechanism of quorum sensing molecules in the adaptive immune system is less studied, the current results suggest that 3-oxo-C12-HSL is closely related to the mitochondrial pathway in host immune cells. For example, 3-oxo-C12-HSL induces apoptosis of Jurkat cells by inhibiting the expression of three mitochondrial electron transport chain proteins; it can also trigger mitochondrial dysfunction and induce mast cell apoptosis through Ca2+ signaling.Among the quorum sensing molecules, the AHLs have the greatest impact on plant immune system. The different effects on plant resistance depends on the chain lengths of acyl groups in bacterial-produced AHLs. Short-chain AHLs (C4-HSL and C8-HSL) induce plant resistance to pathogenic bacteria mainly through the auxin pathway and jasmonic acid pathway. Long-chain AHL (3-oxo-C14-HSL) is commonly used in hosts against fungal pathogens by inducing stomata defense responses, and the reaction process is related to salicylic acid. Diffusible signal factor molecules also interfere with the stomatal immunity caused by pathogens. It may act through the formin nanoclustering-mediated actin assembly and MPK3 pathway to inhibit the innate immunity of Arabidopsis. In summary, AHLs induced different plant pathways and affects the plant-bacteria interactions to trigger plant immunity. As a quorum sensing molecule of fungi, farnesol has similar effects on host immunity as AHLs, such as stimulating cytokine secretion and activating an inflammatory response. It also plays a unique role on dendritic cell differentiation and maturation. In addition, studies have found that farnesol has a protective effect on autoimmune encephalomyelitis, which may be related to its effect on the composition of intestinal microorganisms of the host.Therefore, targeting the host immune system and quorum sensing molecules to develop antibacterial compounds can effectively inhibit the invasion of pathogens and subserve the host to resist the influence of pathogenic bacteria. This article will review the mechanism of host immune responses triggered by important quorum sensing molecules, aiming to explore the targets of host-acting antibacterial compounds and provide new directions for the prevention or treatment of causative infectious sources and the development of related drugs.
10.GPR40 novel agonist SZZ15-11 regulates glucolipid metabolic disorders in spontaneous type 2 diabetic KKAy mice
Lei LEI ; Jia-yu ZHAI ; Tian ZHOU ; Quan LIU ; Shuai-nan LIU ; Cai-na LI ; Hui CAO ; Cun-yu FENG ; Min WU ; Lei-lei CHEN ; Li-ran LEI ; Xuan PAN ; Zhan-zhu LIU ; Yi HUAN ; Zhu-fang SHEN
Acta Pharmaceutica Sinica 2024;59(10):2782-2790
G protein-coupled receptor (GPR) 40, as one of GPRs family, plays a potential role in regulating glucose and lipid metabolism. To study the effect of GPR40 novel agonist SZZ15-11 on hyperglycemia and hyperlipidemia and its potential mechanism, spontaneous type 2 diabetic KKAy mice, human hepatocellular carcinoma HepG2 cells and murine mature adipocyte 3T3-L1 cells were used. KKAy mice were divided into four groups, vehicle group, TAK group, SZZ (50 mg·kg-1) group and SZZ (100 mg·kg-1) group, with oral gavage of 0.5% sodium carboxymethylcellulose (CMC), 50 mg·kg-1 TAK875, 50 and 100 mg·kg-1 SZZ15-11 respectively for 45 days. Fasting blood glucose, blood triglyceride (TG) and total cholesterol (TC), non-fasting blood glucose were tested. Oral glucose tolerance test and insulin tolerance test were executed. Blood insulin and glucagon were measured


Result Analysis
Print
Save
E-mail