1.Incidence and genetic reproductive characteristics of AZFc microdeletion among patients with azoospermia or severe oligospermia.
Chiyan ZHOU ; Hui WANG ; Qin ZHU ; Luming WANG ; Binzhen ZHU ; Xiaodan LIU
Chinese Journal of Medical Genetics 2023;40(1):26-30
OBJECTIVE:
To explore the incidence of azoospermia factor c (AZFc) microdeletion among patients with azoospermia or severe oligospermia, its association with sex hormone/chromosomal karyotype, and its effect on the outcome of pregnancy following intracytoplasmic sperm injection (ICSI) treatment.
METHODS:
A total of 1 364 males with azoospermia or severe oligospermia who presented at the Affiliated Maternity and Child Health Care Hospital of Jiaxing College between 2013 and 2020 were subjected to AZF microdeletion and chromosome karyotyping analysis. The level of reproductive hormones in patients with AZFc deletions was compared with those of control groups A (with normal sperm indices) and B (azoospermia or severe oligospermia without AZFc microdeletion). The outcome of pregnancies for the AZFc-ICSI couples was compared with that of the control groups in regard to fertilization rate, superior embryo rate and clinical pregnancy rate.
RESULTS:
A total of 51 patients were found to harbor AZFc microdeletion, which yielded a detection rate of 3.74%. Seven patients also had chromosomal aberrations. Compared with control group A, patients with AZFc deletion had higher levels of PRL, FSH and LH (P < 0.05), whilst compared with control group B, only the PRL and FSH were increased (P < 0.05). Twenty two AZFc couples underwent ICSI treatment, and no significant difference was found in the rate of superior embryos and clinical pregnancy between the AZFc-ICSI couples and the control group (P > 0.05).
CONCLUSION
The incidence of AZFc microdeletion was 3.74% among patients with azoospermia or severe oligospermia. AZFc microdeletion was associated with chromosomal aberrations and increased levels of PRL, FSH and LH, but did not affect the clinical pregnancy rate after ICSI treatment.
Child
;
Humans
;
Male
;
Female
;
Pregnancy
;
Azoospermia/genetics*
;
Oligospermia/genetics*
;
Incidence
;
Chromosome Deletion
;
Chromosomes, Human, Y/genetics*
;
Semen
;
Infertility, Male/genetics*
;
Chromosome Aberrations
;
Follicle Stimulating Hormone/genetics*
2.Microdeletions and vertical transmission of the Y-chromosome azoospermia factor region.
Chen-Yao DENG ; Zhe ZHANG ; Wen-Hao TANG ; Hui JIANG
Asian Journal of Andrology 2023;25(1):5-12
Spermatogenesis is regulated by several Y chromosome-specific genes located in a specific region of the long arm of the Y chromosome, the azoospermia factor region (AZF). AZF microdeletions are the main structural chromosomal abnormalities that cause male infertility. Assisted reproductive technology (ART) has been used to overcome natural fertilization barriers, allowing infertile couples to have children. However, these techniques increase the risk of vertical transmission of genetic defects. Despite widespread awareness of AZF microdeletions, the occurrence of de novo deletions and overexpression, as well as the expansion of AZF microdeletion vertical transmission, remains unknown. This review summarizes the mechanism of AZF microdeletion and the function of the candidate genes in the AZF region and their corresponding clinical phenotypes. Moreover, vertical transmission cases of AZF microdeletions, the impact of vertical inheritance on male fertility, and the prospective direction of research in this field are also outlined.
Humans
;
Male
;
Azoospermia/genetics*
;
Sex Chromosome Aberrations
;
Prospective Studies
;
Chromosome Deletion
;
Chromosomes, Human, Y/genetics*
;
Infertility, Male/genetics*
;
Sertoli Cell-Only Syndrome/genetics*
;
Oligospermia/genetics*
3.Analysis of copy number variation in AZF region of Y chromosome in patients with spermatogenic failure.
Hui GAO ; Lijuan WANG ; Yaqin SONG ; Di MA ; Rui NIE ; Yuhua HU ; Huiyan HE ; Ruanzhang ZHANG ; Shayan WANG ; Hui GUO
Chinese Journal of Medical Genetics 2023;40(9):1068-1074
OBJECTIVE:
To explore the characteristics of copy number variation (CNV) within the Y chromosome azoospermia factor (AZF) region in patients with spermatogenesis disorders in the Shenzhen area.
METHODS:
A total of 123 patients with spermatogenesis disorders who had visited Shenzhen People's Hospital from January 2016 to October 2022 (including 73 patients with azoospermia and 50 patients with oligozoospermia) and 100 normal semen males were selected as the study subjects. The AZF region was detected with multiplex ligation-dependent probe amplification (MLPA), and the correlation between the CNV in the AZF region and spermatogenesis disorders was analyzed using the chi-square test or Fisher's exact test.
RESULTS:
19 CNV were detected among 53 patients from the 223 samples, including 20 cases (27.40%, 20/73) from the azoospermia group, 19 cases (38%, 19/50) from the oligozoospermia group, and 14 cases (14%, 14/100) from the normal control group. In the azoospermia, oligozoospermia, and normal control groups, the detection rates for CNV related to the AZFa region (including AZFab and AZFabc) were 5.48% (4/73), 2.00% (1/50), and 0 (0/100), respectively. The detection rates for the AZFb region (including the AZFbc region) were 6.85% (5/73), 0 (0/50), and 0 (0/100), respectively. The detection rates for gr/gr deletions in the AZFc region were 2.74% (2/73), 6.00% (3/50), and 9.00% (9/100), respectively, and those for b2/b4 deletions in the AZFc region were 2.74% (2/73), 10.00% (5/50), and 0 (0/100), respectively. The detection rates for complex rearrangements in the AZFc region were 6.85% (5/73), 18.00% (9/50), and 3.00% (3/100), respectively. Statistical analysis showed no significant difference in the detection rate of gr/gr deletions between the three groups (Fisher's Exact Test value = 2.712, P = 0.249); the differences in the detection rate of b2/b4 deletions between the three groups were statistically significant (Fisher's Exact Test value = 9.489, P = 0.002); the differences in the detection rate of complex rearrangements in the AZFc region between the three groups were statistically significant (Fisher's Exact Test value = 9.493, P = 0.006). In this study, a rare AZFa region ARSLP1 gene deletion (involving SY86 deletion) was detected in a patient with oligozoospermia.
CONCLUSION
CNV in the AZFa and AZFb regions have a severe impact on spermatogenesis, but partial deletion in the AZFa region (ARSLP1 gene deletion) has a minor impact on spermatogenesis. The b2/b4 deletion and complex rearrangement in the AZFc region may be risk factors for male infertility. The gr/gr deletion may not serve as a risk factor for male infertility in the Shenzhen area.
Humans
;
Male
;
Azoospermia/genetics*
;
DNA Copy Number Variations
;
Oligospermia/genetics*
;
Infertility, Male/genetics*
;
Y Chromosome
4.Genetic analysis of a fetus with mosaicism Y chromosome aberration.
Fanrong MENG ; Duan JU ; Xiuyan WANG ; Yunfang SHI ; Meng YANG ; Xiaozhou LI
Chinese Journal of Medical Genetics 2023;40(11):1414-1419
OBJECTIVE:
To carry out prenatal diagnosis for a fetus with mosaicism Yq deletion.
METHODS:
A fetus with high risk of sex chromosomes indicated by non-invasive prenatal testing (NIPT) at Tianjin Medical University General Hospital in July 2021 was selected as the study subject. Prenatal diagnosis of the fetus was performed with combined G-banded chromosomal karyotyping, fluorescence in situ hybridization (FISH), copy number variation sequencing (CNV-seq), real-time fluorescence PCR (QF-PCR), and ultrasound examination.
RESULTS:
Analysis of the amniocytes at 23 gestational weeks had yielded a 45,X karyotype. However, FISH had shown signals of Y chromosome. Re-examination by cordocentesis had shown a mosaicism of 46,X,+mar[33]/45,X[17]. FISH showed that 69% of the cells had contained Y chromosome signals. The result of CNV-seq was seq[19]del(Y)(q11.1q12)(mos) chrY: g.13200001_ 28820000del (mosaicism rate = 64%), which suggested mosaicism for a Yq deletion, which encompassed the azoospermia factor (AZF) region. Deletion of the AZF region was verified by QF-PCR. The fetal karyotype was ultimately determined as mos46,X,del(Y)(q11.1)[33]/45,X[17]. Although ultrasound examination had shown no abnormality in the fetus, the couple had opted to terminate the pregnancy, and the induced fetus had a normal male appearance.
CONCLUSION
The combined use of multiple techniques is beneficial for accurate and rapid prenatal diagnosis. For fetuses with mosaicism chromosomal abnormalities, it may be difficult to accurately predict the postnatal phenotype. It is therefore necessary to further explore their genotype-phenotype correlation in order to provide better guidance upon genetic counseling.
Female
;
Pregnancy
;
Male
;
Humans
;
Mosaicism
;
DNA Copy Number Variations
;
In Situ Hybridization, Fluorescence
;
Y Chromosome
;
Fetus
5.Genetic analysis of a rare case with Disorder of sex development due to structural rearrangement of Y chromosome.
Manli MI ; Junke XIA ; Yaqin HOU ; Peng DAI ; Yanan WANG ; Xiangdong KONG
Chinese Journal of Medical Genetics 2023;40(11):1430-1435
OBJECTIVE:
To explore the genetic basis for a rare case with Disorder of sex development.
METHODS:
Clinical data of the patient was collected. Chromosomal karyotyping, SRY gene testing, whole exome sequencing (WES), low-coverage massively parallel copy number variation sequencing (CNV-seq), fluorescence in situ hybridization (FISH), and whole genome sequencing (WGS) were carried out.
RESULTS:
The patient, a 14-year-old female, had manifested short stature and dysplasia of second sex characteristics. She was found to have a 46,XY karyotype and positive for the SRY gene. No pathogenic variant was found by WES, except a duplication at Yp11.32q12. The result of CNV-seq was 47,XYY. FISH has confirmed mosaicism for a dicentric Y chromosome. A 23.66 Mb duplication on Yp11.32q11.223 and a 5.16 Mb deletion on Yq11.223q11.23 were found by WGS. The breakpoint was mapped at chrY: 23656267. The patient's karyotype was ultimately determined as 46,X,psu idic(Y)(q11.223)/46,X,del(Y)(q11.223).
CONCLUSION
The combination of multiple methods has facilitated clarification of the genetic etiology in this patient, which has provided a reference for the clinical diagnosis and treatment.
Female
;
Humans
;
Adolescent
;
DNA Copy Number Variations
;
In Situ Hybridization, Fluorescence
;
Y Chromosome
;
Sexual Development
;
Mosaicism
6.Analysis of clinical outcome of synchronous micro-dissection testicular sperm extraction and intracytoplasmic sperm injection in male infertility with Y chromosome azoospermia factor c region deletion.
Jia Ming MAO ; Lian Ming ZHAO ; De Feng LIU ; Hao Cheng LIN ; Yu Zhuo YANG ; Hai Tao ZHANG ; Kai HONG ; Rong LI ; Hui JIANG
Journal of Peking University(Health Sciences) 2022;54(4):652-657
OBJECTIVE:
To analyze the clinical treatment results of male infertility caused by Y chromosome azoospermia factor c region(AZFc) deletion after synchronous micro-dissection testicular sperm extraction (micro-TESE) and intracytoplasmic sperm injection (ICSI) and to guide the treatment of infer- tile patients caused by AZFc deletion.
METHODS:
The clinical data of infertile patients with AZFc deletion who underwent synchronous micro-TESE in Peking University Third Hospitalfrom January 2015 to December 2019 were retrospectively analyzed. The clinical outcomes of ICSI in the patients who successfully obtained sperm were followed up and we compared the outcomes between the first and second synchronous procedures, including fertilization rate, high-quality embryo rate, clinical pregnancy rate, abortion rate and live birth rate.
RESULTS:
A total of 195 male infertile patients with AZFc deletion underwent micro-TESE. Fourteen patients were cryptozoospermia and their sperms were successfully obtained in all of them during the operation, and the sperm retrieval rate (SRR) was 100%(14/14). The remaining 181 cases were non obstructive azoospermia, and 122 cases were successfully found the sperm, the SRR was 67.4%(122/181). The remaining 59 patients with NOA could not found mature sperm during micro-TESE, accounting for 32.6% (59/181). We followed up the clinical treatment outcomes of the patients with successful sperm retrieved by synchronous micro-TESE and 99 patients were enrolled in the study. A total of 118 micro-TESE procedures and 120 ICSI cycles were carried out. Finally 38 couples successfully gave birth to 22 male and 22 female healthy infants, with a cumulative live birth rate of 38.4% (38/99). In the fresh-sperm ICSI cycle of the first and second synchronous operation procedures, the high-quality embryo rate, clinical pregnancy rate of the fresh embryo transfer cycle and live birth rate of the oocyte retrieve cycle were 47.7% vs. 50.4%, 40.5% vs. 50.0%, and 28.3% vs. 41.2%, respectively. The second operation group was slightly higher than that of the first synchronous operation group, but there was no significant difference between the groups.
CONCLUSION
Male infertility patients caused by AZFc deletion have a high probability of successfully obtaining sperm in testis through micro-TESE for ICSI and give birth to their own offspring with their own biological characteristics. For patients who failed in the first synchronous procedure, they still have the opportunity to successfully conceive offspring through reoperation and ICSI.
Azoospermia/therapy*
;
Chromosome Deletion
;
Chromosomes, Human, Y
;
Female
;
Humans
;
Infertility, Male/therapy*
;
Male
;
Pregnancy
;
Retrospective Studies
;
Semen
;
Sex Chromosome Aberrations
;
Sex Chromosome Disorders of Sex Development
;
Sperm Injections, Intracytoplasmic/methods*
;
Sperm Retrieval
;
Spermatozoa
;
Testis
8.A multiplex PCR-based sensitive and specific method for detecting Y chromosome material in patients with Turner syndrome.
Qiang ZHAO ; Shuxiong CHEN ; Hailin SUN ; Wanling YANG ; Bo BAN
Chinese Journal of Medical Genetics 2022;39(11):1216-1223
OBJECTIVE:
To develop a multiplex PCR method for a rapid detection of Y chromosome-specific sequences in patients with Turner syndrome.
METHODS:
Nine genes were selected from various regions of the Y chromosome for designing the primers, which included SRY, TBL1Y, TSPY on the short arm of the Y chromosome, DDX3Y, HSFY1, RPS4Y2 and CDY1 on the long arm of Y chromosome and SHOX in the short arm and SPRY3 in the long arm of the pseudoautosomal region (PAR) of X and Y chromosomes. A multiplex PCR method for the nine genes in Y chromosome was established and optimized. The sensitivity was tested by using different amounts of genomic DNA. A total of 36 patients with Turner syndrome and a patient with male dwarfism with karyotype of 46, X, +mar were examined by the multiplex PCR method for the existence of materials from the Y chromosome.
RESULTS:
The optimization results of the multiplex PCR reaction system (50 μL) showed that when the final concentration of upstream and downstream of each pair of primers was 0.1 μM, the multiplex PCR reaction of the 9 pairs of primers clearly amplified the target with the expected band size, and there was no non-specific amplification. The bands were clearly visible when the amount of genomic DNA in the multiple PCR reaction system was as low as 1 ng. By using the method, we have examined the 36 patients with Turner syndrome. One patient with Turner syndrome with karyotype of 45,X[40]/47XYY[21] amplified specific seven genes on Y chromosome, 35 patients with Turner syndrome amplified only two target genes SHOX and SPRY3, but not the other seven specific genes on the Y chromosome, which was in keeping with the clinical manifestations of such patients.
CONCLUSION
This study established a multiplex PCR reaction system with nine genes, which can quickly and accurately screen Y chromosome materials in patients with Turner syndrome. It has the advantages of low cost, simple operation, high specificity and rapid turn-around time, and can be used to detect Turner syndrome patients with Y chromosome material in time. The method has provided a diagnostic basis for preventive gonad resection to prevent malignant gonadal tumors.
Humans
;
Male
;
Turner Syndrome/genetics*
;
Multiplex Polymerase Chain Reaction
;
Y Chromosome
;
Karyotyping
;
DNA Primers
;
DNA
;
Chromosomes, Human, Y/genetics*
;
Transducin/genetics*
;
Minor Histocompatibility Antigens
;
DEAD-box RNA Helicases/genetics*
9.Forensic Application of Next Generation Sequencing Technology in the Typing of Y Chromosome Genetic Markers.
Yue YANG ; Rui Yang TAO ; Min LI ; Huan YU ; Li Qin CHEN ; Ya Li WANG ; Cheng Tao LI
Journal of Forensic Medicine 2021;37(1):91-98
The paternal inheritance characteristics of Y chromosome have been widely used in the forensic genetics field to detect the genetic markers in the non-recombining block, and used in the studies such as, genetic relationship identification, mixed stain detection, pedigree screen and ethnicity determination. At present, capillary electrophoresis is still the most common detection technology. The commercial detection kits and data analysis and processing system based on this technology are very mature. However, the disadvantages of traditional detection technology have gradually appeared with the rapid growth of bio-information amount, which promotes the renewal of forensic DNA typing technology. In recent years, next generation sequencing (NGS) technology has developed rapidly. This technology has been applied to various fields including forensic genetics and has provided new techniques for the detection of Y chromosome genetic markers. This article describes the current situation and application prospects of the NGS technology in forensic Y chromosome genetic markers detection in order to provide new ideas for future judicial practice.
Chromosomes, Human, Y/genetics*
;
DNA Fingerprinting
;
Forensic Genetics
;
Genetic Markers
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Microsatellite Repeats
;
Technology
;
Y Chromosome
10.Genetic analysis of three children with disorders of sex development caused by structural rearrangements of Y chromosome.
Hongying WANG ; Linqi CHEN ; Yuanyuan CHEN ; Yiping SHEN ; Li LI ; Xuejun SHAO ; Haibo LI
Chinese Journal of Medical Genetics 2020;37(11):1226-1232
OBJECTIVE:
To explore the genetic basis of three children with disorders of sex development (DSD) in association with rare Y chromosome rearrangements.
METHODS:
The three children, who all featured short stature and DSD, were subjected to G banding chromosomal karyotyping, multiplex PCR for Y chromosomal microdeletion, sequencing of the whole SRY gene, SNP-array analysis for genomic copy number variations, and fluorescence in situ hybridization (FISH).
RESULTS:
The combined analysis revealed chromosomal abnormalities in all of the three children, including 46,X,t(X;Y)(p22.3;q11.2) in case 1, mos 45,X,der(7)pus dic(Y:7)(p11.3p22)del(7)(p21.2p21.3) del(7)(p12.3p14.3) [56]/45,X [44] in case 2, and mos 45,X [50]/46,X,idic(Y)(q11.22) [42]/47,X,idem×2 [4]/47,XYY [2] in case 3.
CONCLUSION
Combined use of genetic techniques can delineate complex rearrangements involving Y chromosome in patients featuring short stature and DSD. Above findings have enabled molecular diagnosis and genetic counseling for the patients.
Child
;
Chromosome Banding
;
Chromosomes, Human, Y/genetics*
;
DNA Copy Number Variations
;
Humans
;
In Situ Hybridization, Fluorescence
;
Male
;
Polymorphism, Single Nucleotide
;
Sex Chromosome Aberrations
;
Sex Chromosome Disorders of Sex Development/genetics*

Result Analysis
Print
Save
E-mail