1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.Influence of hybridization probe capture and amplicon library construction methods on HLA genotyping resolution level
Xiaoni YUAN ; Tengteng ZHANG ; Yang LI ; Xue JIANG ; Tianjie YANG ; Xiaojing BAO ; Jun HE
Chinese Journal of Blood Transfusion 2025;38(3):303-308
[Objective] To compare next generation sequencing (NGS) library construction technology between probe hybridization capture and amplicon methods, and analyze the influencing factors of HLA genotyping resolution level and its prospects in clinical applications. [Methods] A total of 207 clinical samples with known typing results and samples from the proficiency testing plan were selected. The conformity rate of HLA genotyping results, allele coverage and typing data analysis indicators were confirmed, and the effects of two library construction methods on the level of HLA genotyping discrimination were compared. [Results] The concordance rate of 207 samples with the feedback results of PT or prior well-characterized HLA genotypes was 100%. Among them, 91 samples were captured using hybridization probe capture method. Compared with the original amplicon method, the hybridization probe capture method can distinguish the alleles of DRB1 and DPB1 that cannot be determined in 13 samples. The allelic imbalance of DRB1, DPA1, and DQB1 loci in 6 samples was resolved. Three samples were found to have missed detection of alleles at the DQA1 and DQB1 loci. [Conclusion] The performance indicators of hybridization probe capture and amplicon performance confirmation meet the requirements of clinical detection of HLA genotyping, which provides an experimental method and basis for clinical application.
3.Tumor Microenvironment Polyamines Inhibit T Cell Antitumor Activity
Yuan-Bao AI ; Xue-Mei HUANG ; Sen LIU
Progress in Biochemistry and Biophysics 2025;52(8):1986-1997
Tumor immunotherapy has emerged as the fourth major therapeutic modality, following surgery, radiotherapy, and chemotherapy. Unlike traditional treatments that primarily target tumor cells directly, immunotherapy harnesses the body’s immune system to recognize and eliminate cancer cells. Over the past decade, various immunotherapeutic strategies have been developed, including immune checkpoint inhibitors (ICIs), chimeric antigen receptor (CAR) T cell therapy, cancer vaccines, and cytokine-based therapies. However, the immunosuppressive tumor microenvironment (TME) poses a significant obstacle to the effectiveness of these treatments. Polyamines—including putrescine, spermidine, and spermine—are polycationic metabolites that often accumulate abnormally in the TME and act as critical immunoregulatory molecules. T cells play a central role in antitumor immunity, yet their function is frequently influenced by immunoregulatory factors within the TME. Elevated polyamine levels in the TME have been implicated in dampening antitumor T cell responses, thereby facilitating tumor immune evasion. Polyamines in the TME originate from both tumor cells and tumor-associated immune cells. Tumor cells often overexpress the oncogene Myc, which drives the upregulation of polyamine biosynthetic enzymes, resulting in excessive intracellular polyamine production. Additionally, M2-polarized tumor-associated macrophages (M2-TAMs) contribute to polyamine accumulation by upregulating arginase-I (Arg-I), an enzyme that catalyzes the conversion of arginine into ornithine—a key precursor in the polyamine biosynthetic pathway. These combined sources lead to sustained polyamine enrichment in the TME, contributing to immune dysfunction and supporting tumor progression. Moreover, polyamines indirectly affect T cell activity by modulating macrophage polarization and directly suppress tumor cell apoptosis, further promoting an immunosuppressive environment. This review highlights the multifaceted roles of polyamines in modulating tumor-infiltrating T cell function, with a particular focus on their influence on CD4+ T cell differentiation,CD8+ T cell cytotoxicity, and immune checkpoint molecule expression. Recent studies suggest that polyamines suppress CD4+ T cell activation and differentiation by modulating the MAPK/ERK signaling pathway. Additionally, polyamines can impair T cell receptor (TCR) signaling and promote immune evasion through the upregulation of PD-L1 expression on tumor cells. These effects collectively contribute to weakened antitumor T cell responses. Polyamine blocking therapy (PBT), which primarily targets polyamine biosynthesis and transport, has emerged as a novel adjunctive immunotherapeutic strategy in cancer treatment. By reducing polyamine levels in the TME, PBT restores T cell effector functions and alleviates immunosuppression. Notably, studies have demonstrated that combining PBT with ICIs produces synergistic antitumor effects and may overcome resistance to ICI monotherapy. Although research has revealed the inhibitory effects of polyamines on T cell immune function, the underlying regulatory mechanisms remain to be fully elucidated. Moreover, due to compensatory mechanisms employed by tumor cells to maintain polyamine homeostasis, multi-targeted approaches may be necessary to achieve safe and effective therapeutic outcomes. Future PBT strategies may benefit from the integration of multi-omics technologies and the development of nanocarrier-based drug delivery systems, which could collectively enhance their specificity, efficacy, and applicability in cancer immunotherapy. This review systematically elucidates the immunomodulatory effects of polyamines on T cell function within the TME and provides theoretical support and novel insights for the advancement of tumor immunotherapeutic strategies.
4.Structure and Function of Rhizomicrobes Recruited by Acteoside in Root Exudates of Rehmannia glutinosa
Yongxiang ZHANG ; Bao ZHANG ; Lianghua LIN ; Fan YANG ; Shujuan XUE ; Li GU ; Zhongyi ZHANG ; Liuji ZHANG ; Suiqing CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(9):156-165
ObjectiveTo reveal the correlation of Rehmannia glutinosa-soil feedback process with the formation of its continuous cropping obstacles through the identification of the root exudates of R. glutinosa and analysis of the specific rhizomicrobes recruited by the root exudate. MethodThe root exudates of R. glutinosa seedlings germinated under sterilized condition and those enriched in the rhizosphere of R. glutinosa cultivated in the field were collected and analyzed using the ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS). The highly abundant compounds identified in the root exudates were added into blank soil, and the soil microbial community was profiled using Illumina Miseq sequencing. The bacterial and fungal functions were predicted by PICRUSt and FUNGuild, respectively. ResultThe identification results showed that seven phenylethanoid glycosides were found in R. glutinosa root exudates, and acteoside possessed the highest abundance. In the soil enriched with acteoside, the bacterial genera such as Agromyces, Pseudomonas, Lysobacter, Sphingobium, Pseudoxanthomonas and Sphingomonas were enriched. For the fungi, the genera Neocosmospora, Plectosphaerella and Dactylonectria, and the species such as Neocosmospora rubicola, Plectosphaerella cucumerina, Dactylonectria alcacerensis and Fusarium solani showed higher abundance. The functional analysis indicated the above-mentioned bacterial genera may realize rapid proliferation by utilizing, biodegrading and transforming phenylethanoid glycosides, and some potential fungal pathogens were colonized. ConclusionThe R. glutinsoa-soil feedbacks were likely generated by the phenylethanoid glycosides in the root exudates together with the specific rhizomicrobes. The investigations of R. glutinsoa-soil feedbacks under continuous cropping system are critical to the further understanding of the underlying mechanisms related to its continuous cropping obstacles.
5. Resveratrol inhibits autophagy and promotes apoptosis in uveal melanoma cells via miR-512-3P/DUSPl axis
Zheng-Yang SUN ; Nan-Nan LIU ; Xue-Fei FAN ; Su-Huan CHEN ; Xiao-Yu CHEN ; Zheng-Yang SUN ; Wu-Qi CHEN ; Guang-Yi CHEN ; Yu-Bao SHAO ; Xiao-Yu CHEN
Chinese Pharmacological Bulletin 2024;40(2):292-298
Aim To investigate the regulatory role and mechanism of resveratrol in inhibiting autophagy and promoting apoptosis in choroidal melanoma cells. Methods Choroidal melanoma cells (MUM2B) were divided into control and experimental groups, and treated with different concentrations of resveratrol (0, 10, 20,40,60,80 μmol ·L
6.Construction and evaluation of novel self-assembled nanoparticles of Herpetospermum caudigerum Wall.
Yu-wen ZHU ; Xiang DENG ; Li CHEN ; Jian-tao NING ; Yu-ye XUE ; Bao-de SHEN ; Ling-yu HANG ; Hai-long YUAN
Acta Pharmaceutica Sinica 2024;59(2):448-454
It has become an industry consensus that self-assembled nanoparticles (SAN) are formed by molecular recognition of chemical components in traditional Chinese medicine during the decoction process. The insoluble components in the decoction are mostly in the form of nanoparticles, which can improve the problem of poor water solubility. However, the transfer rate of these insoluble components in the decoction is still very low, which limits the efficacy of the drug. This study aimed to refine the traditional decoction self-assembly phenomenon. The self-assembled nanoparticles were constructed by micro-precipitation method (MP-SAN), and characterized by particle size, zeta potential, stability index and morphology. The formation of MP-SAN and alterations in related physicochemical properties were evaluated using modern spectroscopic and thermal analysis techniques. The quality value transmitting pattern of lignan components within the MP-SAN was assessed
7.Mechanism of catalpol regulating Th17 cell differentiation by interfering PKM2/LDHA expression
Yu GE ; Xue CHEN ; Furong WANG ; Yujie BAO ; Peng DING ; Lingling ZHOU
China Pharmacy 2024;35(1):15-20
OBJECTIVE To investigate the mechanism of catalpol affecting the differentiation of helper T cell 17 (Th17) by interfering the expressions of pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA). METHODS The naive CD4+ T cells were selected from the spleen of C57BL/6 mice, and were differentiated into Th17 cells by adding directional differentiation stimulants for 72 hours. At the same time, the cells were treated with 0 (directed control), 20, 40 and 80 μg/mL catalpol. The flow cytometry was used to detect the proportion of Th17 cell differentiation in cells; the colorimetric method was adopted to detect the levels of pyruvate and lactate in cell culture supernatant; mRNA expressions of retinoid-related orphan nuclear receptor gamma t (RORγt), PKM2 and LDHA were detected by qRT-PCR method; Western blot was used to detect the expression levels of PKM2, LDHA, signal transducer and activator of transcription 3 (STAT3), and phosphorylated STAT3 (p-STAT3) proteins in cells. RESULTS Compared with the directed control group, after 72 hours of treatment with 20, 40, 80 μg/mL catalpol, the differentiation ratio of Th17 cells were decreased by 6.74%, 8.41%, 9.24%, and the levels of pyruvate and lactate in the cell culture supernatant, the mRNA expressions of PKM2, LDHA and RORγt as well as the protein expressions of PKM2 and LDHA and the phosphorylation of STAT3 were significantly reduced (P<0.05). CONCLUSIONS Catalpol can reduce the glycolysis level by down-regulating the expressions of PKM2 and LDHA, thereby inhibiting the differentiation of Th17 cells.
8.Pharmacoeconomics of ivabradine in the treatment of CHF in the context of “Quadruple Therapy”
Congling CHEN ; Han WU ; Jie ZHOU ; Ruobin ZHANG ; Jinping ZHANG ; Xue BAO ; Xian YANG
China Pharmacy 2024;35(1):63-68
OBJECTIVE To evaluate the cost-effectiveness of ivabradine in the treatment of chronic heart failure (CHF) in the context of “Quadruple Therapy” from the perspective of the health system. METHODS Based on real-world cohort data, the Markov model was constructed according to the natural progression of CHF, with a cycle time of 3 months, a study timeframe of 20 years, and a discount rate of 5%. Using quality-adjusted life year (QALY) and incremental cost-effectiveness ratios (ICER) as the output indexes, the cost-utility analysis was used to evaluate the cost-effectiveness of ivabradine in combination with the “Quadruple Therapy” regimen, compared with the “Quadruple Therapy” regimen for the treatment of CHF, and the robustness of the results of the base analysis was verified by univariate sensitivity analysis and probabilistic sensitivity analysis. RESULTS The results of the base analysis showed that the ICER of ivabradine combined with the “Quadruple Therapy” regimen was 165 065.54 yuan/QALY, compared with the “Quadruple Therapy” regimen, which was lower than the willingness-to-pay (WTP) threshold (257 094 yuan/QALY) based on 3 times of China’s gross domestic product (GDP) per capita in 2022. The results of the univariate sensitivity analysis showed that the discount rate had the greatest impact on the robustness of the model. The probabilistic sensitivity analysis showed that the probability that the ivabradine combined with the “Quadruple Therapy” regimen was cost-effective under the WTP threshold in this study was 59.50%. CONCLUSIONS When using 3 times China’s 2022 GDP per capita (257 094 yuan/ QALY) as the WTP threshold, the combination of ivabradine and the “Quadruple Therapy” regimen for treating CHF is cost- effective.
9.Study on baritinib improving pulmonary endothelial barrier injury in acute lung injury mice by regulating the JAK2/STAT3 pathway
Lin WANG ; Jun-Fang CHEN ; Bao-Liang ZHAO ; Xue-Li WANG
The Chinese Journal of Clinical Pharmacology 2024;40(16):2363-2367
Objective To explore the effect of barretinib on mice with acute lung injury(ALI)by regulating the Janus kinase 2(JAK2)/signal transducer and activator of transcription 3(STAT3)pathway.Methods The male C57BL/6 mice were randomly divided into control group,model group and experimental-L,-M-H groups.Except for the control group,the other four groups were constructed ALI models by intraperitoneal injection of lipopolysaccharide.The control and model groups were given equal volume 0.9%NaCl by gavage.The experimental-H,-M,-L groups were administered with 1.00,0.50 and 0.25 mg·mL-1 barretinib solution 200 μL by gavage.Five groups were treated for 48 hours with once every 12 hours.The levels of inflammatory cytokine in bronchoalveolar lavage fluid were measured by enzyme linked immunosorbent assay.The expression levels of Occludin,JAK2 and STAT3 in mouse lung tissue were detected by Western blot.Results The levels of tumor necrosis factor-α in bronchoalveolar lavage fluid for experimental-M,-H groups,model group and control group were(228.48±25.41),(198.53±23.11),(317.32±32.85)and(48.93±2.59)ng·L-1;the levels of interleukin-6 were(118.81±14.85),(98.58±13.82),(172.23±25.94)and(49.47±3.06)ng·L-1;the relative expression levels of Occludin were 0.48±0.13,0.49±0.11,0.28±0.09 and 0.69±0.21;the phospho-JAK2/JAK2 ratios were 0.51±0.13,0.32±0.09,0.75±0.21 and 0.16±0.05;the phospho-STAT3/STAT3 ratios were 0.43±0.11,0.27±0.08,0.78±0.21 and 0.17±0.05,respectively.The differences of above indicators were statistically significant between the experimental-M,-H groups,control group and model group(all P<0.05).Conclusion Barretinib can reduce the lung inflammatory response and improves the level of tight junction protein in lung tissue to protect ALI mice by inhibiting the JAK2/STAT3 signaling pathway.
10.Downregulation of Serum PTEN Expression in Mercury-Exposed Population and PI3K/AKT Pathway-Induced Inflammation
Peng MEI ; Min En DING ; Yang Hao YIN ; Xue Xue DING ; Huan WANG ; Feng Jian WANG ; Lei HAN ; Dong Heng ZHANG ; Li Bao ZHU
Biomedical and Environmental Sciences 2024;37(4):354-366
Objective This study investigated the impact of occupational mercury(Hg)exposure on human gene transcription and expression,and its potential biological mechanisms. Methods Differentially expressed genes related to Hg exposure were identified and validated using gene expression microarray analysis and extended validation.Hg-exposed cell models and PTEN low-expression models were established in vitro using 293T cells.PTEN gene expression was assessed using qRT-PCR,and Western blotting was used to measure PTEN,AKT,and PI3K protein levels.IL-6 expression was determined by ELISA. Results Combined findings from gene expression microarray analysis,bioinformatics,and population expansion validation indicated significant downregulation of the PTEN gene in the high-concentration Hg exposure group.In the Hg-exposed cell model(25 and 10 μmol/L),a significant decrease in PTEN expression was observed,accompanied by a significant increase in PI3K,AKT,and IL-6 expression.Similarly,a low-expression cell model demonstrated that PTEN gene knockdown led to a significant decrease in PTEN protein expression and a substantial increase in PI3K,AKT,and IL-6 levels. Conclusion This is the first study to report that Hg exposure downregulates the PTEN gene,activates the PI3K/AKT regulatory pathway,and increases the expression of inflammatory factors,ultimately resulting in kidney inflammation.

Result Analysis
Print
Save
E-mail