1.Status of the poor vision among 3 014 primary school students in Wucheng district of Jinhua city and analysis of the influencing factors
Xiaolu XIE ; Gangyue WU ; Xiaoying LI
International Eye Science 2024;24(2):324-327
AIM: To explore the prevalence and influencing factors of poor vision among 3 014 primary school students in Wucheng District, Jinhua City, in order to provide evidence for the intervention measures of poor vision.METHODS: Using a cross-sectional study, a self-designed questionnaire was done, including general conditions and influencing factors of vision. The international standard logarithmic visual acuity chart was used for visual acuity detection. The risk factors that were statistically significant among the single factor groups were used as independent variables for multivariate Logistic regression analysis.RESULTS: A total of 1 367 students with poor vision were detected, the detection rate was 45.36%, among which mild poor vision rare was 26.08%; moderate rate was 11.51%; and severe rate was 7.76%. Multivariate Logistic regression analysis showed that senior grades, parental myopia, daily insufficient sleep and outdoor activity, overuse of electronics or computers and no eye exercise were risk factors for poor vision.CONCLUSION: The rate of poor vision among the primary school students was severe, schools should take measures to improve and prevent students' poor vision by increasing outdoor activity time, correcting poor reading and writing posture, and reducing the time spent on electronic products.
2.E2 signaling in myofibers promots macrophage efferocytosis in mouse skeletal muscles with cardiotoxin-induced acute injury
Qihui CAI ; Haiqiang LAN ; Bojun XIAN ; Lian LIU ; Nan WANG ; Xiaolei HUANG ; Xiaolu NIU ; Xinyu HU ; Chen LI ; Junyi XIE ; Zhaohong LIAO
Journal of Southern Medical University 2024;44(11):2192-2200
Objective To investigate the effect of E2 signaling in myofibers on muscular macrophage efferocytosis in mice with cardiotoxin-induced acute skeletal muscle injury.Methods Female wild-type C57BL/6 mice with and without ovariectomy and male C57BL/6 mice were given a CTX injection into the anterior tibial muscle to induce acute muscle injury,followed by intramuscular injection of β-estradiol(E2)or 4-hydroxytamoxifen(4-OHT).The changes in serum E2 of the mice were detected using ELISA,and the number,phenotypes,and efferocytosis of the macrophages in the inflammatory exudates and myofiber regeneration and repair were evaluated using immunofluorescence staining and flow cytometry.C2C12 cells were induced to differentiate into mature myotubes,which were treated with IFN-γ for 24 before treatment with β-Estradiol or 4-OHT.The treated myotubes were co-cultured with mouse peritoneal macrophages in a 1:2 ratio,followed by addition of PKH67-labeled apoptotic mouse mononuclear spleen cells induced by UV irradiation,and macrophage efferocytosis was observed using immunofluorescence staining and flow cytometry.Results Compared with the control mice,the female mice with ovariectomy showed significantly increased mononuclear macrophages in the inflammatory exudates,with increased M1 cell percentage,reduced M2 cell percentage and macrophage efferocytosis in the injured muscle,and obviously delayed myofiber regeneration and repair.In the cell co-culture systems,treatment of the myotubes with β-estradiol significantly increased the number and proportion of M2 macrophages and macrophage efferocytosis,while 4-OHT treatment resulted in the opposite changes.Conclusion In injured mouse skeletal muscles,myofiber E2 signaling promotes M1 to M2 transition to increase macrophage efferocytosis,thereby relieving inflammation and promoting muscle regeneration and repair.
3.Pathogenic analysis and diagnostic value of metagenomic next-generation sequencing in critically ill children with hematological disorders
Xiaolu DENG ; Jian HE ; Min XIE ; Liangchun YANG ; Hui ZHANG ; Daolin SI ; Xia WANG
Journal of Chinese Physician 2024;26(5):676-680
Objective:To explore the application of metagenomic next-generation sequencing (mNGS) in critically ill children with hematological disorders and evaluate its diagnostic value.Methods:A retrospective analysis was conducted on the clinical data of children with hematological diseases, tumors, and hematopoietic stem cell transplantation who underwent traditional culture and mNGS testing in the pediatric intensive care unit of the Xiangya Hospital, Central South University from September 2019 to June 2022. The detection rate and diagnostic value of traditional culture and mNGS for pathogens were analyzed and compared.Results:Among the 50 patients, there were 29 males and 21 females, with a median age of 9.00(4.75-13.00) years. A total of 60 samples were sent for mNGS testing, including 40 blood samples, 10 bronchoalveolar lavage fluid samples, 7 cerebrospinal fluid samples, and 1 bone marrow, 1 skin, and 1 pleural fluid sample each. 49 positive samples were detected by mNGS, including 20 cases of viruses, 14 cases of bacteria, 8 cases of mixed samples, and 7 cases of fungi. The detection rate of mNGS in this study was significantly higher than that in traditional pathogen culture (81.7% vs 16.7%), and the difference was statistically significant ( P<0.01). Based on clinical diagnostic cases, the sensitivity of mNGS was significantly higher than that of traditional culture (85.2% vs 29.6%), with a statistically significant difference ( P<0.01), while its specificity was not statistically significant ( P>0.05) compared to traditional culture (50.0% vs 83.3%). Conclusions:mNGS has a higher detection rate and sensitivity than traditional pathogen culture, and can early identify viral, fungal, and mixed infections, providing strong assistance for precise treatment of critically ill children with hematological conditions.
4.Advances in the mechanism of arteriovenous endovascular fistula dysfunction
Wentong HUANG ; Xiaolu SUI ; Tingfei XIE ; Yunpeng XU ; Yanzi ZHANG ; Aisha ZHANG ; Jiahui CHEN ; Xiaoling ZHONG ; Jihong CHEN
Journal of Chinese Physician 2024;26(6):958-960
The stenosis and embolization of internal fistula vessels directly affect the clinical treatment effect of maintenance hemodialysis patients, and the study of the mechanism of internal fistula stenosis has become a research hotspot in recent years. Previous studies mainly focused on the hemodynamics and pathophysiology of blood vessel wall, and there were few studies on molecular biology and its related signaling pathways. This paper reviews the hemodynamics of the vascular pathway of internal arteriovenous fistula (AVF), the pathophysiological mechanism, molecular biology, and changes in various signaling pathways of AVF dysfunction at home and abroad, in order to provide references for the study of AVF dysfunction.
5.Machine learning predicts poor outcome in patients with acute minor ischemic stroke
Fei XIE ; Qiuwan LIU ; Xiaolu HE ; Zhuqing WU ; Juncang WU
International Journal of Cerebrovascular Diseases 2024;32(6):421-427
Objectives:To develop a machine learning prediction model for poor outcome of acute minor ischemic stroke (AMIS) at 90 days after onset and to explain the importance of various risk factors.Methods:Patients with AMIS admitted to the Second People's Hospital of Hefei from June 2022 to December 2023 were included retrospectively. AMIS was defined as the National Institutes of Health Stroke Scale (NIHSS) score ≤5 at admission. According to the modified Rankin Scale score at 90 days after onset, the patients were divided into a good outcome group (<2) and a poor outcome group (≥2). Recursive feature elimination (RFE) method was used to screen characteristic variables of poor outcome. Based on logistic regression (LR), supported vector machine (SVM), and extreme Gradient Boosting (XGBoost) machine learning algorithms, prediction models for poor outcome of AMIS were developed, and the predictive performance of the models was compared by the area under the curve (AUC) of receiver operating characteristic (ROC) curve and the calibration curve. Shapley Additive exPlanations (SHAP) algorithm was used to explain the role of characteristic variables in the optimal prediction model. Results:A total of 225 patients with AMIS were included, of which 152 (67.56%) had good outcome and 73 (32.44%) had poor outcome. Multivariate analysis showed that baseline NIHSS score, baseline systolic blood pressure, hypertension, diabetes, low-density lipoprotein cholesterol, homocysteine, body mass index, D-dimer, and age were the characteristic variables associated with poor outcome in patients with AMIS. The ROC curve analysis shows that the LR model had the best predictive performance (AUC=0.888, 95% confidence interval [ CI] 0.807-0.970), the next was the XGBoost model (AUC=0.888, 95% CI 0.796-0.980), while the SVM model had the lowest performance (AUC=0.849, 95% CI 0.754-0.944). The calibration curve showed that the LR model performed the best in terms of calibration accuracy. SHAP showed that baseline systolic blood pressure, baseline NIHSS score, diabetes, hypertension and body mass index were the top five risk factors for poor outcome of patients with AMIS. Conclusions:The LR algorithm has stable and superior performance in predicting poor outcome of patients with AMIS. Baseline systolic blood pressure, baseline NIHSS score, diabetes, hypertension and body mass index are the important risk factors for poor outcome of patients with AMIS.
6.E2 signaling in myofibers promots macrophage efferocytosis in mouse skeletal muscles with cardiotoxin-induced acute injury
Qihui CAI ; Haiqiang LAN ; Bojun XIAN ; Lian LIU ; Nan WANG ; Xiaolei HUANG ; Xiaolu NIU ; Xinyu HU ; Chen LI ; Junyi XIE ; Zhaohong LIAO
Journal of Southern Medical University 2024;44(11):2192-2200
Objective To investigate the effect of E2 signaling in myofibers on muscular macrophage efferocytosis in mice with cardiotoxin-induced acute skeletal muscle injury.Methods Female wild-type C57BL/6 mice with and without ovariectomy and male C57BL/6 mice were given a CTX injection into the anterior tibial muscle to induce acute muscle injury,followed by intramuscular injection of β-estradiol(E2)or 4-hydroxytamoxifen(4-OHT).The changes in serum E2 of the mice were detected using ELISA,and the number,phenotypes,and efferocytosis of the macrophages in the inflammatory exudates and myofiber regeneration and repair were evaluated using immunofluorescence staining and flow cytometry.C2C12 cells were induced to differentiate into mature myotubes,which were treated with IFN-γ for 24 before treatment with β-Estradiol or 4-OHT.The treated myotubes were co-cultured with mouse peritoneal macrophages in a 1:2 ratio,followed by addition of PKH67-labeled apoptotic mouse mononuclear spleen cells induced by UV irradiation,and macrophage efferocytosis was observed using immunofluorescence staining and flow cytometry.Results Compared with the control mice,the female mice with ovariectomy showed significantly increased mononuclear macrophages in the inflammatory exudates,with increased M1 cell percentage,reduced M2 cell percentage and macrophage efferocytosis in the injured muscle,and obviously delayed myofiber regeneration and repair.In the cell co-culture systems,treatment of the myotubes with β-estradiol significantly increased the number and proportion of M2 macrophages and macrophage efferocytosis,while 4-OHT treatment resulted in the opposite changes.Conclusion In injured mouse skeletal muscles,myofiber E2 signaling promotes M1 to M2 transition to increase macrophage efferocytosis,thereby relieving inflammation and promoting muscle regeneration and repair.
7.Regulation mechanism of ischemic preconditioning renal tubular cell-derived exosomes on PI3K/AKT/mTOR signaling pathway in rats with renal ischemia reperfusion injury
Jiahui CHEN ; Yanzi ZHANG ; Aisha ZHANG ; Xiaolu SUI ; Yunpeng XU ; Tingfei XIE ; Jihong CHEN
Chinese Journal of Nephrology 2024;40(9):732-740
This study aims to establish a rat model of renal ischemia reperfusion injury (RIRI) to observe the alterations in the expression of phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway following various exosome treatments. Additionally, differential miRNA expression analysis will be conducted to elucidate the molecular mechanisms underlying the effects of exosomes derived from ischemic preconditioned (IPC) renal tubular cells in mitigating RIRI in rats. Initially, ten SD rats were subjected to bilateral nephrectomy under general anesthesia to prepare primary renal tubular cells. The second-generation renal tubular cells were then subjected to the following treatments for 12 hours: normoxia (38% O 2, 5% CO 2), hypoxia (1% O 2, 5% CO 2), and hypoxia plus inactivation (heated at 65 ℃ for 30 minutes). Following these treatments, exosomes were extracted, yielding normoxic exosomes, IPC exosomes, and inactivated exosomes, respectively. A subsequent cohort of 50 SD rats was randomly divided into five groups: Sham group, RIRI group, RIRI + normoxic exosome group (NC group), RIRI + IPC exosome group (IPC group), and RIRI + inactivated exosome group (INA group). RIRI model was established in the latter four groups. Twenty-four hours after RIRI modeling, the NC, IPC, and INA groups received intravenous injections of 200 μg of normoxic exosomes, IPC exosomes, and inactivated exosomes via the tail vein, respectively. Six days later, venous blood samples were collected, and both kidneys were excised to observe renal function, histopathological changes in kidney tissue, and alterations in the PI3K/AKT/mTOR signaling pathway among the five groups. Furthermore, differential miRNA expression analysis [ P<0.05, |log 2(Fold Change)|≥1] was conducted between the NC and IPC groups to investigate the changes in the miRNA expression profile. Subsequently, GO analysis and KEGG pathway enrichment analysis were performed. The results revealed that: (1) Compared with the Sham group, the RIRI and INA groups exhibited elevated levels of serum creatinine and urea nitrogen (all P<0.01). Histopathological examination of kidney tissues showed substantial inflammatory cell infiltration in the interstitium accompanied by varying degrees of edema, degenerative swelling of tubular structures, necrosis, and detachment of tubular epithelial cells. Notably, the number of TUNEL-positive cells was significantly increased, while the number of Ki67-stained positive cells was markedly decreased. Additionally, the mRNA and protein expression of PI3K/AKT/mTOR signaling pathway in RIRI group and INA group were down-regulated. (2) Compared to the NC group, the IPC group demonstrated lower levels of serum creatinine and urea nitrogen (both P<0.01). Notably, there was a significant decrease in the accumulation of inflammatory cells in the renal interstitium, and tissue edema was markedly improved. Moreover, the number of TUNEL-positive cells was reduced, while the number of Ki67-stained positive cells was significantly increased. Additionally, the mRNA and protein expressions of PI3K, PDK1, AKT, and mTOR were all up-regulated (all P<0.05). (3) Compared to the NC group, 56 miRNAs were up-regulated and 42 miRNAs were down-regulated in the IPC group. The target genes of GO enrichment analysis were PIK3C2A, PIK3CA, PIK3CB, PIK3CD, PIK3C2G, AKT1, mTOR, Rheb, and KEGG enrichment analysis revealed significant enrichment in PI3K/AKT signal pathway and mTOR signal pathway. In conclusion, this study reveals that during the course of RIRI, exosomes derived from IPC renal tubular cells induce differential miRNA expression in kidney tissues, resulting in enhanced expression of the PI3K/AKT/mTOR signaling pathway, which plays a pivotal role in mitigating RIRI in rats.
8.The mechanism of ischemic preconditioning renal tubular cell-derived exosomes in the repair of renal ischemia-reperfusion injury in rats
Lixiang LI ; Yanzi ZHANG ; Yunpeng XU ; Zibin XU ; Xiaolu SUI ; Qicheng ZENG ; Jiefeng ZOU ; Shuzhen YUAN ; Tingfei XIE ; Jihong CHEN
Journal of Chinese Physician 2022;24(2):260-265
Objective:Clamping bilateral renal arteries with refined surgical methods to establish the rat renal ischemia-reperfusion injury (RIRI) model, and study the protective mechanism of ischemic preconditioning renal (IPC) tubular cell-derived exosomes in RIRI.Methods:25 female Sprague Dawley (SD) rats were divided into sham group, model group, inactivated group, normoxic group, IPC group. In the sham operation group, after bilateral renal arteries were dissociated, the back incision was disinfected and closed. The model group established RIRI model; RIRI models were established in inactivated group, normoxia group and IPC group, and then 200 μg of inactivated exosomes, normal exosomes and IPC exosomes were injected into the caudal vein 24 hours after operation. Serum creatinine (Scr) and urea nitrogen (BUN) levels were detected. The pathological changes of renal tissue were observed under light microscope. Transmission electron microscopy (TEM) was used to observe the shape and size of renal tubular exosomes. Nanoparticle tracking analysis (NTA)was used to detect the concentration and size of renal tubular exosomes.Results:Compared with the sham group, the Scr and BUN levels in the model group were significantly elevated ( P<0.01). Renal pathological changes in the model group showed damaged of the tubular structure, necrosis and shedding of tubular epithelial cells, and a large number of inflammatory cells accumulated in the renal interstitial tissue with varying degrees of edema. Compared with the inactivated group, the Scr and BUN levels significantly decreased in the normoxic group and IPC group ( P<0.01). Renal pathological changes in the normoxic group and IPC group showed that the renal tubular cell necrosis alleviated, inflammatory was reduced, the improved edema. Compared with the normoxic group, the Scr and BUN levels in the IPC group were further reduced ( P<0.01). Renal pathological changes in the IPC group showed that the inflammatory cells were significantly reduced, the cell edema was significantly improved, and the cell apoptosis was significantly reduced. Conclusions:Clamping bilateral renal arteries with refined surgical methods is the main and optimal way to build a rat model of RIRI. IPC tubular cell-derived exosomes have protective and repair effects on RIRI.
9.Differential gene sequencing alignment analysis of hyperplastic stenosis in murine arteriovenous fistula
Aisha ZHANG ; Xiaolu SUI ; Yanzi ZHANG ; Yunpeng XU ; Tingfei XIE ; Shuzhen YUAN ; Qicheng ZENG ; Jiefeng ZOU ; Jihong CHEN
Chinese Journal of Nephrology 2022;38(8):699-709
Objective:To establish a mouse model of intra-jugular arteriovenous fistula (AVF) to screen differentially expressed genes in the process of intimal stenosis of AVF for investigating the abnormal expression signaling pathways and the mechanisms.Methods:Forty-six male C57BL/6 mice were randomly divided into AVF group ( n=23) and sham-operated group ( n=23). The AVF group underwent internal jugular arteriovenous fistuloplasty, and the sham-operated group separated the right external jugular vein and common carotid artery and then sutured the incision. The whole-genome sequences of mice with AVF stenosis were determined by transcriptomic reversible chain terminator and synthetic sequencing. The microarray data set was established, and the Benjamini & Hochberg method of gene microarray data analysis was applied to screen the differentially expressed genes. The differentially expressed genes were screened by R-language enrichment analysis. Then, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) were performed. The subcellular localization of the differentially expressed genes was performed by BUSCA software. The protein network interaction of differentially expressed genes was analyzed by using STRING database and Cytoscape software. Results:In the AVF group, 21 mice were successfully modeled and 2 mice failed. Therefore, there were 21 mice in the AVF group and only 21 mice in the sham-operated group. This mouse internal jugular AVF model was innovated using the continuous-interrupted suture method, which improved the success rate of modeling this model. The differential gene sequencing analysis showed that there were 2 514 differentially expressed genes in the AVF process, including 1 323 up-regulated genes and 1 191 down-regulated genes. GO functional enrichment analysis showed that the differential genes were mainly enriched in metabolic process, activation, redox, mitochondria and so on. KEGG pathway enrichment analysis showed that the differential genes were enriched in metabolism, energy substance synthesis, diabetes, oxidative stress and so on. Statistical analysis of subcellular localization showed that the differences were mainly in mitochondrial proteins (24.24%), cytoplasmic proteins (17.51%), nuclear proteins (13.13%), cell membrane proteins (11.45%), and extracellular proteins (10.77%).Conclusions:Mitochondrial oxidative stress injury may be involved in the pathological damage process of endothelial proliferation stenosis in the AVF.
10.Uric acid induces inflammatory injury in HK-2 cells via PI3K/AKT/NF-κB signaling pathway
Tingfei XIE ; Shuzhen YUAN ; Xiaolu SUI ; Fengjuan GU ; Aisha ZHANG ; Yunpeng XU ; Qicheng ZENG ; Jiefeng ZOU ; Jihong CHEN
Chinese Journal of Nephrology 2021;37(1):36-42
Objective:To investigate the effects and underlying mechanisms of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/NF-κB signaling pathway in human kidney-2(HK-2) cells of hyperuricemic nephropathy.Methods:HK-2 cells were cultured in vitro and randomly divided into control group and experimental group. The experimental group was induced by high uric acid (720 μmol/L) immersion for 48 h to establish a cell model of hyperuricemic nephropathy in vitro and subsequently divided into hyperuricemic group, overexpressed protease activated receptor 2 (PAR2) and knockdown PAR2 group. The expressions of PAR2, PI3K, AKT, NF-κB mRNA were measured by real-time PCR. The expressions of PAR2, PI3K, AKT and NF-κB protein were measured by Western blotting. The expressions of tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1), interleukin-6 (IL-6), pro-interleukin-1β (pro-IL-1β), interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) were detected by enzyme linked immunosorbent assay (ELISA). Results:(1) Compared with the control group, the expressions of PAR2, PI3K, AKT and NF-κB mRNA and protein in hyperuricemic group were significantly increased (all P<0.05), the expressions of TNF-α, MCP-1, IL-6, pro-IL-1β, IL-1β and TGF-β1 in the supernatant in hyperuricemic group were significantly increased (all P<0.01). (2) Compared with the hyperuricemic group, the expressions of PAR2, PI3K, AKT and NF-κB mRNA and protein in overexpressed PAR2 group were significantly increased (all P<0.05), the expressions of TNF-α, MCP-1, IL-6, IL-1β and TGF-β1 in the supernatant were significantly increased (all P<0.05). (3) Compared with the hyperuricemic group, the expression of PAR2, PI3K, AKT and NF-κB mRNA and protein in knockdown PAR2 group were significantly decreased (all P<0.05), the expressions of IL-6, pro-IL-1β, IL-1β and TGF-β1 in the supernatant were significantly decreased (all P<0.05). Conclusions:In the process of uric acid-induced HK-2 cell damage, uric acid significantly up-regulates the expression of PI3K/AKT/NF-κB signaling pathway by activating PAR2, leading to a marked increase in inflammatory damage. Knocking down PAR2 inhibits the expression of PI3K/AKT/NF-κB signaling pathway, which can effectively reduce the inflammatory damage of HK-2 cells.

Result Analysis
Print
Save
E-mail