1.Dissecting the histological heterogeneity of ovarian carcinosarcoma and high-grade serous ovarian cancer in primary and metastatic tumors by single-cell transcriptomic analysis.
Kaipeng XIE ; Shuang LIANG ; Nanxi WANG ; Qiaoying ZHU ; Jiangping WU ; Zhening PU ; Xiaoli WU ; Dake LI ; Juncheng DAI
Chinese Medical Journal 2025;138(17):2195-2197
2.Expert consensus on pulpotomy in the management of mature permanent teeth with pulpitis.
Lu ZHANG ; Chen LIN ; Zhuo CHEN ; Lin YUE ; Qing YU ; Benxiang HOU ; Junqi LING ; Jingping LIANG ; Xi WEI ; Wenxia CHEN ; Lihong QIU ; Jiyao LI ; Yumei NIU ; Zhengmei LIN ; Lei CHENG ; Wenxi HE ; Xiaoyan WANG ; Dingming HUANG ; Zhengwei HUANG ; Weidong NIU ; Qi ZHANG ; Chen ZHANG ; Deqin YANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Jingzhi MA ; Shuli DENG ; Xiaoli XIE ; Xiuping MENG ; Jian YANG ; Xuedong ZHOU ; Zhi CHEN
International Journal of Oral Science 2025;17(1):4-4
Pulpotomy, which belongs to vital pulp therapy, has become a strategy for managing pulpitis in recent decades. This minimally invasive treatment reflects the recognition of preserving healthy dental pulp and optimizing long-term patient-centered outcomes. Pulpotomy is categorized into partial pulpotomy (PP), the removal of a partial segment of the coronal pulp tissue, and full pulpotomy (FP), the removal of whole coronal pulp, which is followed by applying the biomaterials onto the remaining pulp tissue and ultimately restoring the tooth. Procedural decisions for the amount of pulp tissue removal or retention depend on the diagnostic of pulp vitality, the overall treatment plan, the patient's general health status, and pulp inflammation reassessment during operation. This statement represents the consensus of an expert committee convened by the Society of Cariology and Endodontics, Chinese Stomatological Association. It addresses the current evidence to support the application of pulpotomy as a potential alternative to root canal treatment (RCT) on mature permanent teeth with pulpitis from a biological basis, the development of capping biomaterial, and the diagnostic considerations to evidence-based medicine. This expert statement intends to provide a clinical protocol of pulpotomy, which facilitates practitioners in choosing the optimal procedure and increasing their confidence in this rapidly evolving field.
Humans
;
Calcium Compounds/therapeutic use*
;
Consensus
;
Dental Pulp
;
Dentition, Permanent
;
Oxides/therapeutic use*
;
Pulpitis/therapy*
;
Pulpotomy/standards*
3.Expert consensus on intentional tooth replantation.
Zhengmei LIN ; Dingming HUANG ; Shuheng HUANG ; Zhi CHEN ; Qing YU ; Benxiang HOU ; Lihong QIU ; Wenxia CHEN ; Jiyao LI ; Xiaoyan WANG ; Zhengwei HUANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Shuang PAN ; Deqin YANG ; Weidong NIU ; Qi ZHANG ; Shuli DENG ; Jingzhi MA ; Xiuping MENG ; Jian YANG ; Jiayuan WU ; Lan ZHANG ; Jin ZHANG ; Xiaoli XIE ; Jinpu CHU ; Kehua QUE ; Xuejun GE ; Xiaojing HUANG ; Zhe MA ; Lin YUE ; Xuedong ZHOU ; Junqi LING
International Journal of Oral Science 2025;17(1):16-16
Intentional tooth replantation (ITR) is an advanced treatment modality and the procedure of last resort for preserving teeth with inaccessible endodontic or resorptive lesions. ITR is defined as the deliberate extraction of a tooth; evaluation of the root surface, endodontic manipulation, and repair; and placement of the tooth back into its original socket. Case reports, case series, cohort studies, and randomized controlled trials have demonstrated the efficacy of ITR in the retention of natural teeth that are untreatable or difficult to manage with root canal treatment or endodontic microsurgery. However, variations in clinical protocols for ITR exist due to the empirical nature of the original protocols and rapid advancements in the field of oral biology and dental materials. This heterogeneity in protocols may cause confusion among dental practitioners; therefore, guidelines and considerations for ITR should be explicated. This expert consensus discusses the biological foundation of ITR, the available clinical protocols and current status of ITR in treating teeth with refractory apical periodontitis or anatomical aberration, and the main complications of this treatment, aiming to refine the clinical management of ITR in accordance with the progress of basic research and clinical studies; the findings suggest that ITR may become a more consistent evidence-based option in dental treatment.
Humans
;
Tooth Replantation/methods*
;
Consensus
;
Periapical Periodontitis/surgery*
4.Taohe Chengqi decoction inhibits PAD4-mediated neutrophil extracellular traps and mitigates acute lung injury induced by sepsis.
Mengting XIE ; Xiaoli JIANG ; Weihao JIANG ; Lining YANG ; Xiaoyu JUE ; Yunting FENG ; Wei CHEN ; Shuangwei ZHANG ; Bin LIU ; Zhangbin TAN ; Bo DENG ; Jingzhi ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(10):1195-1209
Acute lung injury (ALI) is a significant complication of sepsis, characterized by high morbidity, mortality, and poor prognosis. Neutrophils, as critical intrinsic immune cells in the lung, play a fundamental role in the development and progression of ALI. During ALI, neutrophils generate neutrophil extracellular traps (NETs), and excessive NETs can intensify inflammatory injury. Research indicates that Taohe Chengqi decoction (THCQD) can ameliorate sepsis-induced lung inflammation and modulate immune function. This study aimed to investigate the mechanisms by which THCQD improves ALI and its relationship with NETs in sepsis patients, seeking to provide novel perspectives and interventions for clinical treatment. The findings demonstrate that THCQD enhanced survival rates and reduced lung injury in the cecum ligation and puncture (CLP)-induced ALI mouse model. Furthermore, THCQD diminished neutrophil and macrophage infiltration, inflammatory responses, and the production of pro-inflammatory cytokines, including interleukin-1β (IL-1β), IL-6, and tumor necrosis factor α (TNF-α). Notably, subsequent experiments confirmed that THCQD inhibits NET formation both in vivo and in vitro. Moreover, THCQD significantly decreased the expression of peptidyl arginine deiminase 4 (PAD4) protein, and molecular docking predicted that certain active compounds in THCQD could bind tightly to PAD4. PAD4 overexpression partially reversed THCQD's inhibitory effects on PAD4. These findings strongly indicate that THCQD mitigates CLP-induced ALI by inhibiting PAD4-mediated NETs.
Extracellular Traps/immunology*
;
Acute Lung Injury/immunology*
;
Animals
;
Sepsis/immunology*
;
Drugs, Chinese Herbal/pharmacology*
;
Mice
;
Neutrophils/immunology*
;
Male
;
Protein-Arginine Deiminase Type 4/genetics*
;
Mice, Inbred C57BL
;
Humans
;
Disease Models, Animal
;
Cytokines/metabolism*
5.Clinical and genetic analysis of two children with TANC2 gene variants and a literature review
Manman CHU ; Dan XU ; Jiayang XIE ; Xiaoli ZHANG ; Mengyue WANG ; Jialin LI ; Yichao MA ; Xiaoli LI ; Junling WANG ; Tianming JIA
Chinese Journal of Medical Genetics 2024;41(10):1195-1200
Objective:To explore the clinical and genetic characteristics of two children with Neurodevelopmental disorders (NDDs) due to variants of TANC2 gene. Methods:Clinical data of two children who were admitted to the Third Affiliated Hospital of Zhengzhou University respectively in April 2020 and April 2021 were retrospectively analyzed. Peripheral blood samples of the children and their parents were collected and subjected to whole exome sequencing. Candidate variants were verified by Sanger sequencing. By using " TANC2 gene", "Neurodevelopmental disorders", "Nervous system development disorders", " TANC2" as the key words, similar cases were searched from the CNKI, Wanfang database platform and PubMed database, with the search time set as from the establishment of the database to December 2023. This study was approved by Medical Ethics Committee of the Third Affiliated Hospital of Zhengzhou University (Ethics No. 2020-57). Results:Case 1 was a 1-year-and-3-month-old girl who had developed convulsions at 1 year old and had three episodes of seizures. Her epilepsy had resolved with the treatment of oxcarbazepine, which was stopped at the age of 2-year-and-7-month. Her language, movement and intelligence development were all normal. Case 2 was a 1-year-and-10-month-old boy, who had developed convulsions at 1 year old. His seizure type was myoclonus, and the frequency was dozens of times a day. His epilepsy had resolved with the treatment of sodium valproate. His language, movement and intelligence development was delayed for about half a year. Genetic analysis showed that both children had harbored novel variants of the TANC2 gene (NM_025185.4), including c. 3398G>A (p.Gly1133Glu) and c.2829+ 1G>A, respectively. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the former was rated as likely pathogenic (PS2+ PM2_Supporting+ PP3) and the latter was rated as pathogenic (PVS1+ PS2+ PM2_Supporting). Two previous reports were retrieved, which had involved 17 cases and 16 variants. Common features had included autism spectrum disorder (70.6%, 12/17), intellectual disability (94.1%, 16/17), language and motor retardation (88.2%, 15/17; 58.8%, 10/17), facial dysmorphism, epilepsy, ataxia, and thoracic and spinal deformities. Conclusion:Variants of the TANC2 gene probably underlay the epilepsy and development delay in these children with NDDs.
6.Effects and mechanisms of dihydroartemisinin combined with carfilzomib on the activity, proliferation, and apoptosis of multiple myeloma cells
Lu REN ; Xiaoli XIE ; Kun ZHANG ; Lijuan WANG
Journal of International Oncology 2024;51(3):129-136
Objective:To study the effects and potential mechanisms of the combination of dihydroartemisinin and carfilzomib on the activity, proliferation, and apoptosis of multiple myeloma ARD cell lines.Methods:In vitro cultivation of multiple myeloma ARD cells involved treating the cells with dihydroartemisinin at concentrations of 0, 5, 10, 20, 40, and 80 μg/ml, and with carfilzomib at concentrations of 0, 5, 10, 20, 40, and 80 nmol/L. The ARD cells were divided into a control group (no treatment) , a dihydroartemisinin group (2 μg/ml) , a carfizomib group (8 nmol/L) , and a combination group (dihydroartemisinin 2 μg/ml + carfizomib 8 nmol/L) . Cell activity and proliferation were assessed by MTT assay and EdU-488 assay; cell apoptosis was evaluated using live cell/dead cell dual staining and flow cytometry. The expression levels of apoptosis-related proteins were examined using Western blotting analysis. Results:The cell survival rates of ARD cells treated with 0, 5, 10, 20, 40, and 80 μg/ml dihydroartemisinin were (100.00±2.18) %, (50.22±3.09) %, (37.39±2.34) %, (30.42±1.79) %, (23.80±1.12) %, and (18.04±0.79) %, respectively, and there was a statistically significant difference ( F=653.30, P<0.001) . With the increase of drug concentration, ARD cell activity decreased gradually (all P<0.05) . The cell survival rates of ARD cells treated with 0, 5, 10, 20, 40, and 80 nmol/L carfilzomib were (100.00±1.12) %, (83.98±2.95) %, (67.27±2.10) %, (58.24±2.02) %, (46.34±1.14) %, and (37.47±1.36) %, respectively, and there was a statistically significant difference ( F=227.40, P<0.001) . With the increase of drug concentration, ARD cell activity decreased gradually (all P<0.05) . The cell survival rates for the control group, dihydroartemisinin group, carfilzomib group, and combination group were (100.00±2.67) %, (67.23±0.57) %, (76.23±2.83) %, and (27.06±1.09) %, respectively, and there was a statistically significant difference ( F=655.60, P<0.001) . There were statistically significant differences in the dihydroartemisinin group, carfilzomib group, and combination group compared with control group (all P<0.001) . There were statistically significant differences in the dihydroartemisinin group and carfilzomib group compared with combined group (both P<0.001) . The EdU-488 experiment showed that the EdU-positive rates of ARD cells in the control group, dihydroartemisinin group, carfilzomib group, and combination group were (100.00±8.17) %, (68.07±6.14) %, (85.04±2.78) %, and (19.62±3.83) %, respectively, and there was a statistically significant difference ( F=115.20, P<0.001) . There were statistically significant differences in the dihydroartemisinin group, carfilzomib group, and combination group compared with control group ( P<0.001; P=0.047; P<0.001) . There were statistically significant differences in the dihydroartemisinin group and carfilzomib group compared with combined group (both P<0.001) . The live cell/dead cell dual staining experiment showed, under bright-field observation, the cell morphology was intact in the control group. In all the drug groups, the cell morphology became irregular, reduced in size with condensed cytoplasmic, and apoptotic vesicles with irregular morphology were seen around the cells, among which the most obvious changes were seen in the combination group. Under fluorescence observation, the cells in the control group only displayed green fluorescence. In all drug-treated groups, cells with red fluorescence were observed, with the combination group having the highest percentage of cells with red fluorescence among the total cell population. The apoptosis rates for the control group, dihydroartemisinin group, carfilzomib group, and combination group were (9.06±2.95) %, (29.50±1.34) %, (20.77±3.00) %, and (58.23±5.13) %, respectively, and there was a statistically significant difference ( F=115.80, P<0.001) . There were statistically significant differences in the dihydroartemisinin group, carfilzomib group, and combination group compared with control group ( P<0.001; P=0.012; P<0.001) . There were statistically significant differences in the dihydroartemisinin group and carfilzomib group compared with combined group (both P<0.001) . There were statistically significant differences in the relative expression levels of P53, Cleaved-Caspase-3, Bcl-2, and Bax proteins among the control group, dihydroartemisinin group, carfilzomib group, and combination group ( F=21.76, P<0.001; F=42.87, P<0.001; F=44.27, P<0.001; F=163.50, P<0.001) . There were statistically significant differences in the dihydroartemisinin group, carfilzomib group, and combination group compared with control group (all P<0.05) . There were statistically significant differences in the dihydroartemisinin group and carfilzomib group compared with combined group (both P<0.05) . Conclusion:The combination of dihydroartemisinin and carfilzomib can synergistically inhibit the activity and proliferation of multiple myeloma ARD cells, and promote apoptosis, and the underlying mechanism may be associated with the mitochondrial apoptosis pathway.
7.Advances in therapeutic drug monitoring methods based on liquid chromatography-tandem mass spectrometry
Ziying LI ; Jie XIE ; Ziyu QU ; You JIANG ; Di ZHANG ; Songlin YU ; Xiaoli MA ; Ling QIU ; Xinhua DAI ; Xiang FANG ; Xiaoping YU
Chinese Journal of Laboratory Medicine 2024;47(3):332-340
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology has the characteristics of high specificity and high throughput, making it rapidly applied and developed in the field of clinical testing. Its application in the monitoring of therapeutic drugs can effectively improve the quantitative accuracy and sensitivity, and formulate a personalized and optimal dosing plan for patients. However, this technology still faces some challenges, and automation, quality control, and quantitative traceability will be the future development direction.
8.Exploration the Immune Regulatory Mechanism of Hedysari Radix Based on Network Pharmacology,Molecular Dynamics,and UPLC-MS/MS
Xudong LUO ; Xinrong LI ; Chengyi LI ; Peng QI ; Tingting LIANG ; Xiaoli FENG ; Xu LI ; Jungang HE ; Xiaocheng WEI ; Ruijuan ZHOU ; Xinming XIE
Traditional Chinese Drug Research & Clinical Pharmacology 2024;35(3):376-383
Objective To predict the core targets and action pathways of Hedysari Radix based on UPLC-MS/MS and network pharmacology methods,and to verify the results of network pharmacology by molecular docking and molecular dynamics techniques.This article aims to investigate immune regulation mechanism of effective components absorbed into blood from Hedysari Radix.Methods Qualitative quantification of effective components absorbed into blood from Hedysari Radix were operated by using UPLC-MS/MS technique.The corresponding targets of effective components absorbed into blood from Hedysari Radix were screened by TCMSP and HERB databases.Targets of immune-related disease were obtained through DisGeNET,OMIM,TTD,and MalaCards databases.The network of"components absorbed into blood from Hedysari Radix-immune-related diseases"was then constructed.GO and KEGG enrichment analysis and mapped the PPI network were performed.Molecular docking and molecular dynamics techniques were applied for validation.Results A total of 8 prototype components absorbed into blood,synergistically acting on 101 targets,were identified by UPLC-MS/MS.They mediated 538 biological processes including immune response,positive regulation of gene expression,receptor binding,and cytokine activity.Meanuhile,116 signaling pathways,such as HIF-1,Toll-like receptor,JAK-STAT,T cell receptor,PI3K-Akt,and FoxO etc.were involved.The core targets were MAPK14,PTGS2,MMP9,PPARG,CCND1,etc..The results of molecular docking showed that formononetin and calycosin had strong docking binding activity with MAPK14.And molecular dynamics simulations further demonstrated that the binding between MAPK14 and formononetin or calycosin had good structural stability and binding affinity.Conclusion The results of serum pharmacochemistry,network pharmacology and molecular dynamics were verified to reveal the material basis and mechanism of Hedysari Radix in regulating immunity.The aim of this study is to provide scientific basis for its immunomodulatory mechanism.
9.The Multicenter Cross-sectional Study on the Distribution Characteristics of Traditional Chinese Medicine Syndrome Elements in Type 2 Diabetes Macroangiopathy
Yulin LENG ; Hong GAO ; Xiaoxu FU ; Gang XU ; Hongyan XIE ; Xingwei ZHUO ; Xiaoqin ZHOU ; Yi YANG ; Xiaoli YUAN ; Zhibiao WANG ; Chunguang XIE
Journal of Traditional Chinese Medicine 2024;65(17):1794-1801
ObjectiveTo explore the distribution characteristics of traditional Chinese medicine (TCM) syndrome elements of macroangiopathy in patients with type 2 diabetes mellitus (T2DM) and the key elements of occurrence, development and progression of disease. MethodsA multicenter cross-sectional study was conducted to enroll 445 T2DM patients from five hospitals, and according to the presence or absence of macroangiopathy, the patients were divided into a T2DM group (120 cases) and a diabetic macroangiopathy (DM) group (325 cases). Patients in DM group were divided into grade Ⅰ, Ⅱ, Ⅲ and Ⅳ according to the peripheral vascular color Doppler ultrasound results and the vascular anomalies classification standard. The general data including gender, age, duration of T2DM and body mass index (BMI) were collected, and the data of four examinations were obtained for syndrome differentiation. According to the diagnostic criteria of TCM syndrome elements, the patients can be divided into 9 patterns including qi deficiency, blood deficiency, yin deficiency, yang deficiency, qi stagnation, blood stasis, excess heat, and excess cold. The general data and distribution of TCM syndrome elements were compared between the two groups. The distribution of TCM syndrome elements in different vascular anomalies grades in the DM group was analyzed. Logistic regression analysis was used to explore the influence of various TCM syndrome elements on the occurrence of macroangiopathy in T2DM. ResultsThere was no significant difference in gender and BMI between groups (P>0.05). The age and duration of diabetes in the DM group were older and longer than those in the T2DM group (P<0.01). With the increase of age and prolonged course of disease, the severity of diabetic macroangiopathy increases gradually (P<0.05 or P<0.01). There was no significant difference in BMI and course of disease among the different TCM syndrome elements (P>0.05). The average age of patients with blood stasis syndrome was the oldest (P<0.05). There was significant difference in gender distribution between the excess heat syndrome and yin deficiency syndrome (P<0.05). A total of 240 TCM syndrome elements were extracted from the T2DM group, while 731 TCM syndrome elements extracted from the DM group. The top two high-frequency syndrome elements in the two groups were qi deficiency and yin deficiency, with a frequency of larger than 50%. The distribution of phlegm-damp syndrome and blood-stasis syndrome were significantly higher in the DM group than in the T2DM group (P<0.01). There were significant differences in the distribution of qi deficiency syndrome, yin deficiency syndrome, phlegm-damp syndrome, blood stasis syndrome, and excess heat syndrome among different grades of vascular anomalies (P<0.01); qi deficiency and yin deficiency were both high-frequency TCM syndrome elements in patients at grades 0 to Ⅲ; phlegm-damp syndrome increased in frequency with the progression of the disease from grades 0 to Ⅳ, and the frequency of blood stasis syndrome showed an overall upward trend. The frequency of phlegm-dampness syndrome increased from grades 0 to Ⅳ with the progression of the disease, and the frequency of blood stasis syndrome showed an overall upward trend. Logistic regression analysis showed that phlegm-damp syndrome and blood stasis syndrome were important TCM syndrome elements related to the vascular anomalies degree of macrovascular disease in T2DM (P<0.05 or P<0.01). ConclusionQi deficiency and yin deficiency are the basic TCM syndrome elements throughout the whole process of T2DM and diabetic macrovascular disease. Phlegm-damp and blood stasis are related to the degree of vascular anomalies in diabetic macrovascular disease and are the key TCM syndrome elements in the progression of macroangiopathy in T2DM.
10.Exploring the Related Substances and Mechanisms of Weining San's Anti Gastric Ulcer Efficacy Based on Fingerprint and Network Pharmacology
Tong ZHOU ; Yiyao LIANG ; Ying XIE ; Xuerong SU ; Yangqian WU ; Yi WAN ; Jinguo XU ; Xiaoli ZHAO ; Chao WANG
Chinese Journal of Modern Applied Pharmacy 2024;41(7):895-905
OBJECTIVE
To explore the pharmacodynamic related substances and mechanism of Weining San(WNS) against gastric ulcer(GU) according to fingerprint and network pharmacology.
METHODS
Twelve batches of WNS fingerprints were established by HPLC, and methodological investigation was carried out. Combined with reference substances, characteristic peaks were identified, pharmacodynamic related substances were screened, and network pharmacological analysis was carried out. Using TCMIP and Swiss Target Prediction database to retrieve component targets; Using OMIM, GeneCards and Drugbank databases to retrieve GU disease targets, taking the intersection targets of components and diseases, using String database to construct protein-protein interaction network diagram, and analyzing topological parameters; Using Cytoscape 3.8.2 software to construct "component-disease-target" network diagram; GO and KEGG enrichment analysis of intersection targets were carried out by Metascape website. Then the alcoholic GU mouse model was established by intragastric administration of absolute ethanol to verify the results of network pharmacology prediction. RESUITS The precision, stability and repeatability of HPLC fingerprint method were good. By comparison and comprehensive analysis of control substances, notoginsenoside R1, ginsenoside Rg1, militarine, ginsenoside Rb1, schisandrin, schisandrol B, deoxyschizandrin and schisantherin A were identified as pharmacodynamic related substances in WNS, which may play their role by regulating core targets such as AKT1, IL-6, STAT3, TNF, IL1B and key signal pathways such as PI3K-Akt and JAK-STAT. The gastric ulcer index, ulcer inhibition rate and HE staining showed that WNS could improve gastric mucosal injury in GU mice. The results of ELISA, WST-1 and TBA showed that WNS could decrease the levels of TNF-α, IL-6, IL-1β and MDA, and increase the levels of SOD and PGE2, suggesting that the anti-GU effect of WNS was related to the inhibition of inflammatory reaction and oxidative stress mechanism, which further verified the prediction of network pharmacology.
CONCLUSION
This study combines fingerprint analysis, network pharmacology, and animal experimental validation to explore the pharmacodynamic related substances and mechanisms of WNS anti-GU efficacy, providing reference for quality control and clinical research of WNS.


Result Analysis
Print
Save
E-mail